IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v147y2020ip1p1969-1978.html
   My bibliography  Save this article

Comparative exergy assessment of vinasse disposal alternatives: Concentration, anaerobic digestion and fertirrigation

Author

Listed:
  • Nakashima, R.N.
  • de Oliveira Junior, S.

Abstract

The ethanol distillation produces large quantities of vinasse, a wastewater with high concentrations of organic and inorganic substances that may cause environmental damages if incorrectly disposed. In this way, different alternatives are proposed to enhance the efficiency of vinasse disposal, such as the anaerobic digestion and concentration processes. However, the evaluation of the thermodynamic performance of those systems and their possible energy integration was seldom investigated. Thus, an exergy assessment and comparison of five different scenarios of vinasse disposal, including the vinasse fertirrigation, concentration and anaerobic digestion processes, is presented in this paper. The results indicate that, among the disposal alternatives, the highest exergy efficiency (20.1%) is attained by a system combining anaerobic digestion and vinasse concentration in series. In this case, the wastewater treatment plant produces the maximum amount of biogas, while the vinasse concentration still recovers water and reduce diesel consumption. Furthermore, the heat integration between the biogas power plant and vinasse concentration is able to increase the exergy efficiency of these processes (10–51%) and reduce 9–11% of steam consumption. In general, the major sources of exergy destruction in vinasse disposal alternatives are related with the exergy loss of organic substances in fertirrigation and irreversibilities in steam generation.

Suggested Citation

  • Nakashima, R.N. & de Oliveira Junior, S., 2020. "Comparative exergy assessment of vinasse disposal alternatives: Concentration, anaerobic digestion and fertirrigation," Renewable Energy, Elsevier, vol. 147(P1), pages 1969-1978.
  • Handle: RePEc:eee:renene:v:147:y:2020:i:p1:p:1969-1978
    DOI: 10.1016/j.renene.2019.09.124
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148119314661
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2019.09.124?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Moraes, Bruna S. & Zaiat, Marcelo & Bonomi, Antonio, 2015. "Anaerobic digestion of vinasse from sugarcane ethanol production in Brazil: Challenges and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 888-903.
    2. Leme, Rodrigo Marcelo & Seabra, Joaquim E.A., 2017. "Technical-economic assessment of different biogas upgrading routes from vinasse anaerobic digestion in the Brazilian bioethanol industry," Energy, Elsevier, vol. 119(C), pages 754-766.
    3. Djalma Nunes Ferraz Júnior, Antônio & Koyama, Mirian H. & de Araújo Júnior, Moacir M. & Zaiat, Marcelo, 2016. "Thermophilic anaerobic digestion of raw sugarcane vinasse," Renewable Energy, Elsevier, vol. 89(C), pages 245-252.
    4. Cortes-Rodríguez, Edgar Fernando & Fukushima, Nilton Asao & Palacios-Bereche, Reynaldo & Ensinas, Adriano V. & Nebra, Silvia A., 2018. "Vinasse concentration and juice evaporation system integrated to the conventional ethanol production process from sugarcane – Heat integration and impacts in cogeneration system," Renewable Energy, Elsevier, vol. 115(C), pages 474-488.
    5. Palacios-Bereche, Reynaldo & Mosqueira-Salazar, Klever Joao & Modesto, Marcelo & Ensinas, Adriano V. & Nebra, Silvia A. & Serra, Luis M. & Lozano, Miguel-Angel, 2013. "Exergetic analysis of the integrated first- and second-generation ethanol production from sugarcane," Energy, Elsevier, vol. 62(C), pages 46-61.
    6. Flórez-Orrego, Daniel & da Silva, Julio A.M. & Velásquez, Héctor & de Oliveira, Silvio, 2015. "Renewable and non-renewable exergy costs and CO2 emissions in the production of fuels for Brazilian transportation sector," Energy, Elsevier, vol. 88(C), pages 18-36.
    7. Fukushima, Nilton Asao & Palacios-Bereche, Milagros Cecilia & Palacios-Bereche, Reynaldo & Nebra, Silvia Azucena, 2019. "Energy analysis of the ethanol industry considering vinasse concentration and incineration," Renewable Energy, Elsevier, vol. 142(C), pages 96-109.
    8. Moraes, Bruna S. & Junqueira, Tassia L. & Pavanello, Lucas G. & Cavalett, Otávio & Mantelatto, Paulo E. & Bonomi, Antonio & Zaiat, Marcelo, 2014. "Anaerobic digestion of vinasse from sugarcane biorefineries in Brazil from energy, environmental, and economic perspectives: Profit or expense?," Applied Energy, Elsevier, vol. 113(C), pages 825-835.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fuess, L.T. & Cruz, R.B.C.M. & Zaiat, M. & Nascimento, C.A.O., 2021. "Diversifying the portfolio of sugarcane biorefineries: Anaerobic digestion as the core process for enhanced resource recovery," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    2. Battisti, Rodrigo & Galeazzi, Andrea & Prifti, Kristiano & Manenti, Flavio & Machado, Ricardo Antonio Francisco & Marangoni, Cintia, 2021. "Techno-economic and energetic assessment of an innovative pilot-scale thermosyphon-assisted falling film distillation unit for sanitizer-grade ethanol recovery," Applied Energy, Elsevier, vol. 297(C).
    3. Siqueira, J.C. & Braga, M.Q. & Ázara, M.S. & Garcia, K.J. & Alencar, S.N.M. & Ramos, T.S. & Siniscalchi, L.A.B. & Assemany, P.P. & Ensinas, A.V., 2022. "Recovery of vinasse with combined microalgae cultivation in a conceptual energy-efficient industrial plant: Analysis of related process considerations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    4. Ibrahim, Taiwo Hassan & Betiku, Eriola & Solomon, Bamidele Ogbe & Oyedele, Julius Olusegun & Dahunsi, Samuel Olatunde, 2022. "Mathematical modelling and parametric optimization of biomethane production with response surface methodology: A case of cassava vinasse from a bioethanol distillery," Renewable Energy, Elsevier, vol. 200(C), pages 395-404.
    5. Palacios-Bereche, Milagros Cecilia & Palacios-Bereche, Reynaldo & Nebra, Silvia Azucena, 2020. "Comparison through energy, exergy and economic analyses of two alternatives for the energy exploitation of vinasse," Energy, Elsevier, vol. 197(C).
    6. Barcelos, Sheyla Thays Vieira & Ferreira, Igor Felipe Lima & Costa, Reginaldo B. & Magalhães Filho, Fernando Jorge Corrêa & Ribeiro, Alisson André & Cereda, Marney Pascoli, 2022. "Startup of UASB reactor with limestone fixed bed operating in the thermophilic range using vinasse as substrate," Renewable Energy, Elsevier, vol. 196(C), pages 610-616.
    7. Aarón Montiel-Rosales & Nayeli Montalvo-Romero & Luis Enrique García-Santamaría & Luis Carlos Sandoval-Herazo & Horacio Bautista-Santos & Gregorio Fernández-Lambert, 2022. "Post-Industrial Use of Sugarcane Ethanol Vinasse: A Systematic Review," Sustainability, MDPI, vol. 14(18), pages 1-25, September.
    8. Felipe Godoy Righetto & Carlos Eduardo Keutenedjian Mady, 2023. "Exergy Analysis of a Sugarcane Crop: A Planting-to-Harvest Approach," Sustainability, MDPI, vol. 15(20), pages 1-14, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Palacios-Bereche, Milagros Cecilia & Palacios-Bereche, Reynaldo & Nebra, Silvia Azucena, 2020. "Comparison through energy, exergy and economic analyses of two alternatives for the energy exploitation of vinasse," Energy, Elsevier, vol. 197(C).
    2. Nunes Ferraz Junior, Antônio Djalma & Etchebehere, Claudia & Perecin, Danilo & Teixeira, Suani & Woods, Jeremy, 2022. "Advancing anaerobic digestion of sugarcane vinasse: Current development, struggles and future trends on production and end-uses of biogas in Brazil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    3. Fuess, L.T. & Cruz, R.B.C.M. & Zaiat, M. & Nascimento, C.A.O., 2021. "Diversifying the portfolio of sugarcane biorefineries: Anaerobic digestion as the core process for enhanced resource recovery," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    4. Takeda, Paula Yumi & Oliveira, Cristiane Arruda & Dias, Maria Eduarda Simões & Paula, Carolina Tavares & Borges, André do Vale & Damianovic, Márcia Helena Rissato Zamariolli, 2022. "Enhancing the energetic potential of sugarcane biorefinery exchanging vinasse and glycerol in sugarcane off-season in an anaerobic reactor," Renewable Energy, Elsevier, vol. 195(C), pages 1218-1229.
    5. de Moraes Dutenkefer, Raphael & de Oliveira Ribeiro, Celma & Morgado Mutran, Victoria & Eduardo Rego, Erik, 2018. "The insertion of biogas in the sugarcane mill product portfolio: A study using the robust optimization approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 729-740.
    6. Vilela, R.S. & Fuess, L.T. & Saia, F.T. & Silveira, C.R.M. & Oliveira, C.A. & Andrade, P.A. & Langenhoff, A. & van der Zaan, B. & Cop, F. & Gregoracci, G.B. & Damianovic, M.H.R.Z., 2021. "Biofuel production from sugarcane molasses in thermophilic anaerobic structured-bed reactors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    7. Siqueira, J.C. & Braga, M.Q. & Ázara, M.S. & Garcia, K.J. & Alencar, S.N.M. & Ramos, T.S. & Siniscalchi, L.A.B. & Assemany, P.P. & Ensinas, A.V., 2022. "Recovery of vinasse with combined microalgae cultivation in a conceptual energy-efficient industrial plant: Analysis of related process considerations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    8. Arodudu, Oludunsin Tunrayo & Helming, Katharina & Voinov, Alexey & Wiggering, Hubert, 2017. "Integrating agronomic factors into energy efficiency assessment of agro-bioenergy production – A case study of ethanol and biogas production from maize feedstock," Applied Energy, Elsevier, vol. 198(C), pages 426-439.
    9. Bechara, Rami & Gomez, Adrien & Saint-Antonin, Valérie & Schweitzer, Jean-Marc & Maréchal, François & Ensinas, Adriano, 2018. "Review of design works for the conversion of sugarcane to first and second-generation ethanol and electricity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 152-164.
    10. Fuess, Lucas Tadeu & dos Santos, Graciete Mary & Delforno, Tiago Palladino & de Souza Moraes, Bruna & da Silva, Ariovaldo José, 2020. "Biochemical butyrate production via dark fermentation as an energetically efficient alternative management approach for vinasse in sugarcane biorefineries," Renewable Energy, Elsevier, vol. 158(C), pages 3-12.
    11. Fuess, Lucas Tadeu & Klein, Bruno Colling & Chagas, Mateus Ferreira & Alves Ferreira Rezende, Mylene Cristina & Garcia, Marcelo Loureiro & Bonomi, Antonio & Zaiat, Marcelo, 2018. "Diversifying the technological strategies for recovering bioenergy from the two-phase anaerobic digestion of sugarcane vinasse: An integrated techno-economic and environmental approach," Renewable Energy, Elsevier, vol. 122(C), pages 674-687.
    12. Purwanta, & Bayu, Ardian Indra & Mellyanawaty, Melly & Budiman, Arief & Budhijanto, Wiratni, 2022. "Techno-economic analysis of reactor types and biogas utilization schemes in thermophilic anaerobic digestion of sugarcane vinasse," Renewable Energy, Elsevier, vol. 201(P1), pages 864-875.
    13. Freitas, F.F. & De Souza, S.S. & Ferreira, L.R.A. & Otto, R.B. & Alessio, F.J. & De Souza, S.N.M. & Venturini, O.J. & Ando Junior, O.H., 2019. "The Brazilian market of distributed biogas generation: Overview, technological development and case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 146-157.
    14. Pazuch, Felix Augusto & Nogueira, Carlos Eduardo Camargo & Souza, Samuel Nelson Melegari & Micuanski, Viviane Cavaler & Friedrich, Leandro & Lenz, Anderson Miguel, 2017. "Economic evaluation of the replacement of sugar cane bagasse by vinasse, as a source of energy in a power plant in the state of Paraná, Brazil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 34-42.
    15. Palacios-Bereche, M.C. & Palacios-Bereche, R. & Ensinas, A.V. & Gallego, A. Garrido & Modesto, Marcelo & Nebra, S.A., 2022. "Brazilian sugar cane industry – A survey on future improvements in the process energy management," Energy, Elsevier, vol. 259(C).
    16. Geraldo Jose Ferraresi Araujo & Sonia Vale Walter Borges Oliveira, 2021. "Energy and environmental analysis of vinasse processing using internal circulation biodigesters and concentrators for different production ranges of ethanol and its potential impact on Brazil," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(3), pages 3130-3163, March.
    17. Silva-Martínez, Rodolfo Daniel & Sanches-Pereira, Alessandro & Ortiz, Willington & Gómez Galindo, Maria Fernanda & Coelho, Suani Teixeira, 2020. "The state-of-the-art of organic waste to energy in Latin America and the Caribbean: Challenges and opportunities," Renewable Energy, Elsevier, vol. 156(C), pages 509-525.
    18. Fonseca, G.C. & Costa, C.B.B. & Cruz, A.J.G., 2020. "Economic analysis of a second-generation ethanol and electricity biorefinery using superstructural optimization," Energy, Elsevier, vol. 204(C).
    19. Fuess, Lucas Tadeu & Kiyuna, Luma Sayuri Mazine & Ferraz, Antônio Djalma Nunes & Persinoti, Gabriela Felix & Squina, Fabio Marcio & Garcia, Marcelo Loureiro & Zaiat, Marcelo, 2017. "Thermophilic two-phase anaerobic digestion using an innovative fixed-bed reactor for enhanced organic matter removal and bioenergy recovery from sugarcane vinasse," Applied Energy, Elsevier, vol. 189(C), pages 480-491.
    20. Leme, Rodrigo Marcelo & Seabra, Joaquim E.A., 2017. "Technical-economic assessment of different biogas upgrading routes from vinasse anaerobic digestion in the Brazilian bioethanol industry," Energy, Elsevier, vol. 119(C), pages 754-766.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:147:y:2020:i:p1:p:1969-1978. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.