IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v200y2022icp395-404.html
   My bibliography  Save this article

Mathematical modelling and parametric optimization of biomethane production with response surface methodology: A case of cassava vinasse from a bioethanol distillery

Author

Listed:
  • Ibrahim, Taiwo Hassan
  • Betiku, Eriola
  • Solomon, Bamidele Ogbe
  • Oyedele, Julius Olusegun
  • Dahunsi, Samuel Olatunde

Abstract

The high rate of cassava vinasse (CV) generation from distilleries and its anti-environmental characteristics threaten the sustainable production of bioethanol. In this study, the production of biomethane via anaerobic digestion (AD) of CV was modelled and optimized with response surface methodology (RSM). The D-Optimal experimental designs produced 27 digestion experiments randomly executed to investigate the effects of CV (55–100%), poultry dropping, PD (0–45%), organic loading rates, OLR (2–10 gVS/l.d), inoculum to substrate percentage, ISP (10–30%) and hydraulic residence time, HRT (20–30 days) on methane yield (MY). Experimental data were fitted to a quadratic model and its significance was assessed using the analysis of variance (ANOVA), and lack of fit test. Model efficiency was experimentally validated in the laboratory. Results showed that the CV had a high carbon-to-nitrogen ratio (C/N) of 43.5:1 and a biochemical methane potential (BMP) of 247.1 Nml/gVS demonstrates the potential for biogas production. The optimum conditions established for biomethane production were 55% CV, 10% OLR, 30% ISP and 20 days HRT with a MY of 254.4 ml/g VS. For the developed model, a coefficient of determination (R2), standard deviation (SDev.) and p-value of 0.9925, 4.91, <0.0001 respectively indicate high predictive accuracy. The study provided vital information for the bioethanol industry and the environmental agencies, on alternative treatment and utilization options for CV.

Suggested Citation

  • Ibrahim, Taiwo Hassan & Betiku, Eriola & Solomon, Bamidele Ogbe & Oyedele, Julius Olusegun & Dahunsi, Samuel Olatunde, 2022. "Mathematical modelling and parametric optimization of biomethane production with response surface methodology: A case of cassava vinasse from a bioethanol distillery," Renewable Energy, Elsevier, vol. 200(C), pages 395-404.
  • Handle: RePEc:eee:renene:v:200:y:2022:i:c:p:395-404
    DOI: 10.1016/j.renene.2022.09.083
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148122014422
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2022.09.083?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Olatunji, Kehinde O. & Ahmed, Noor A. & Madyira, Daniel M. & Adebayo, Ademola O. & Ogunkunle, Oyetola & Adeleke, Oluwatobi, 2022. "Performance evaluation of ANFIS and RSM modeling in predicting biogas and methane yields from Arachis hypogea shells pretreated with size reduction," Renewable Energy, Elsevier, vol. 189(C), pages 288-303.
    2. Xu, Fuqing & Okopi, Solomon Inalegwu & Jiang, Yongmei & Chen, Zhou & Meng, Liyun & Li, Yebo & Sun, Weimin & Li, Chaokun, 2022. "Multi-criteria assessment of food waste and waste paper anaerobic co-digestion: Effects of inoculation ratio, total solids content, and feedstock composition," Renewable Energy, Elsevier, vol. 194(C), pages 40-50.
    3. Wang, Shunli & Hawkins, Gary L. & Kiepper, Brian H. & Das, Keshav C., 2018. "Treatment of slaughterhouse blood waste using pilot scale two-stage anaerobic digesters for biogas production," Renewable Energy, Elsevier, vol. 126(C), pages 552-562.
    4. Subramonia Pillai, N. & Kannan, P. Seeni & Vettivel, S.C. & Suresh, S., 2017. "Optimization of transesterification of biodiesel using green catalyst derived from Albizia Lebbeck Pods by mixture design," Renewable Energy, Elsevier, vol. 104(C), pages 185-196.
    5. Ben-Iwo, Juliet & Manovic, Vasilije & Longhurst, Philip, 2016. "Biomass resources and biofuels potential for the production of transportation fuels in Nigeria," Renewable and Sustainable Energy Reviews, Elsevier, vol. 63(C), pages 172-192.
    6. Nakashima, R.N. & de Oliveira Junior, S., 2020. "Comparative exergy assessment of vinasse disposal alternatives: Concentration, anaerobic digestion and fertirrigation," Renewable Energy, Elsevier, vol. 147(P1), pages 1969-1978.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sayedin, Farid & Kermanshahi-pour, Azadeh & He, Quan Sophia, 2019. "Evaluating the potential of a novel anaerobic baffled reactor for anaerobic digestion of thin stillage: Effect of organic loading rate, hydraulic retention time and recycle ratio," Renewable Energy, Elsevier, vol. 135(C), pages 975-983.
    2. Ugwoke, B. & Gershon, O. & Becchio, C. & Corgnati, S.P. & Leone, P., 2020. "A review of Nigerian energy access studies: The story told so far," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).
    3. Felipe Godoy Righetto & Carlos Eduardo Keutenedjian Mady, 2023. "Exergy Analysis of a Sugarcane Crop: A Planting-to-Harvest Approach," Sustainability, MDPI, vol. 15(20), pages 1-14, October.
    4. Severo, Ihana Aguiar & Siqueira, Stefania Fortes & Deprá, Mariany Costa & Maroneze, Mariana Manzoni & Zepka, Leila Queiroz & Jacob-Lopes, Eduardo, 2019. "Biodiesel facilities: What can we address to make biorefineries commercially competitive?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 686-705.
    5. Jakub Sikora & Marcin Niemiec & Anna Szeląg-Sikora & Zofia Gródek-Szostak & Maciej Kuboń & Monika Komorowska, 2020. "The Effect of the Addition of a Fat Emulsifier on the Amount and Quality of the Obtained Biogas," Energies, MDPI, vol. 13(7), pages 1-12, April.
    6. Wajahat Ullah Khan Tareen & Zuha Anjum & Nabila Yasin & Leenah Siddiqui & Ifzana Farhat & Suheel Abdullah Malik & Saad Mekhilef & Mehdi Seyedmahmoudian & Ben Horan & Mohamed Darwish & Muhammad Aamir &, 2018. "The Prospective Non-Conventional Alternate and Renewable Energy Sources in Pakistan—A Focus on Biomass Energy for Power Generation, Transportation, and Industrial Fuel," Energies, MDPI, vol. 11(9), pages 1-49, September.
    7. Fuess, L.T. & Cruz, R.B.C.M. & Zaiat, M. & Nascimento, C.A.O., 2021. "Diversifying the portfolio of sugarcane biorefineries: Anaerobic digestion as the core process for enhanced resource recovery," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    8. Aarón Montiel-Rosales & Nayeli Montalvo-Romero & Luis Enrique García-Santamaría & Luis Carlos Sandoval-Herazo & Horacio Bautista-Santos & Gregorio Fernández-Lambert, 2022. "Post-Industrial Use of Sugarcane Ethanol Vinasse: A Systematic Review," Sustainability, MDPI, vol. 14(18), pages 1-25, September.
    9. JoungDu Shin & Eunjung Choi & EunSuk Jang & Seung Gil Hong & SangRyong Lee & Balasubramani Ravindran, 2018. "Adsorption Characteristics of Ammonium Nitrogen and Plant Responses to Biochar Pellet," Sustainability, MDPI, vol. 10(5), pages 1-1, April.
    10. Yang, Min & Watson, Jamison & Wang, Zixin & Si, Buchun & Jiang, Weizhong & Zhou, Bo & Zhang, Yuanhui, 2022. "Understanding and design of two-stage fermentation: A perspective of interspecies electron transfer," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    11. Stanley U. Okoro & Udo Schickhoff & Uwe A. Schneider, 2018. "Impacts of Bioenergy Policies on Land-Use Change in Nigeria," Energies, MDPI, vol. 11(1), pages 1-18, January.
    12. Mahdavi-Meymand, Amin & Sulisz, Wojciech, 2023. "Application of nested artificial neural network for the prediction of significant wave height," Renewable Energy, Elsevier, vol. 209(C), pages 157-168.
    13. Sujung Heo & Joon Weon Choi, 2019. "Potential and Environmental Impacts of Liquid Biofuel from Agricultural Residues in Thailand," Sustainability, MDPI, vol. 11(5), pages 1-14, March.
    14. Sehatpour, Mohammad-Hadi & Kazemi, Aliyeh & Sehatpour, Hesam-eddin, 2017. "Evaluation of alternative fuels for light-duty vehicles in Iran using a multi-criteria approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 295-310.
    15. Mukelabai, Mulako Dean & Wijayantha, Upul K.G. & Blanchard, Richard E., 2022. "Renewable hydrogen economy outlook in Africa," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    16. Shehu, Basiru Gwandu & Clarke, Michèle L., 2020. "Successful and sustainable crop based biodiesel programme in Nigeria through ecological optimisation and intersectoral policy realignment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    17. Barcelos, Sheyla Thays Vieira & Ferreira, Igor Felipe Lima & Costa, Reginaldo B. & Magalhães Filho, Fernando Jorge Corrêa & Ribeiro, Alisson André & Cereda, Marney Pascoli, 2022. "Startup of UASB reactor with limestone fixed bed operating in the thermophilic range using vinasse as substrate," Renewable Energy, Elsevier, vol. 196(C), pages 610-616.
    18. Bi, Shaojie & Hong, Xiujie & Yang, Hongzhi & Yu, Xinhui & Fang, Shumei & Bai, Yan & Liu, Jinli & Gao, Yamei & Yan, Lei & Wang, Weidong & Wang, Yanjie, 2020. "Effect of hydraulic retention time on anaerobic co-digestion of cattle manure and food waste," Renewable Energy, Elsevier, vol. 150(C), pages 213-220.
    19. Kalu Samuel Ukanwa & Kumar Patchigolla & Ruben Sakrabani & Edward Anthony & Sachin Mandavgane, 2019. "A Review of Chemicals to Produce Activated Carbon from Agricultural Waste Biomass," Sustainability, MDPI, vol. 11(22), pages 1-35, November.
    20. Rajaeifar, Mohammad Ali & Abdi, Reza & Tabatabaei, Meisam, 2017. "Expanded polystyrene waste application for improving biodiesel environmental performance parameters from life cycle assessment point of view," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 278-298.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:200:y:2022:i:c:p:395-404. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.