IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v115y2018icp139-148.html

Methane recovery from anaerobic digestion of urea-pretreated wheat straw

Author

Listed:
  • Yao, Yiqing
  • Bergeron, Andre David
  • Davaritouchaee, Maryam

Abstract

Pretreatment is necessary to improve methane production from lignocellulosic biomass. Urea was adopted to pretreat wheat straw with the advantages of structure deconstruction, its nitrogen source, and prevention of pH drop in subsequent anaerobic digestion (AD). Scanning electron microscopy (SEM), X-ray diffraction analysis (XRD) and Fourier transform infrared spectroscopy (FTIR) spectra measurements indicated that urea pretreatment is able to degrade the lignocellulosic structure, which was beneficial for the improvement of methane production. Urea pretreatment led to the satisfactory performance of AD with wheat straw as substrate. The maximum methane production of 305.5 L/kg volatile solids (VS) was obtained using 1% (w/w) urea loading, which was 45.2% higher than the untreatment. After 1%- and 3%-urea treatment, time used for achieving stable status (≥50%) was 2 days earlier compared to untreatment. Reductions of total solids (49.4%), VS (54.5%), cellulose (50.4%) and hemicelluloses (47.3%) on the optimal condition were the highest, which were 36.8%, 46.5%, 33.3% and 47.4% higher compared to untreatment. Higher levels of urea pretreatment (3% and 5%) were less efficient and resulted in the formation of pseudo-lignin according to FTIR. These results indicate that wheat straw can be used to produce methane significantly with urea pretreatment.

Suggested Citation

  • Yao, Yiqing & Bergeron, Andre David & Davaritouchaee, Maryam, 2018. "Methane recovery from anaerobic digestion of urea-pretreated wheat straw," Renewable Energy, Elsevier, vol. 115(C), pages 139-148.
  • Handle: RePEc:eee:renene:v:115:y:2018:i:c:p:139-148
    DOI: 10.1016/j.renene.2017.08.038
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148117307917
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2017.08.038?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Zhong, Weizhang & Zhang, Zhongzhi & Qiao, Wei & Fu, Pengcheng & Liu, Man, 2011. "RETRACTED: Comparison of chemical and biological pretreatment of corn straw for biogas production by anaerobic digestion," Renewable Energy, Elsevier, vol. 36(6), pages 1875-1879.
    2. Jiang, Y. & Heaven, S. & Banks, C.J., 2012. "Strategies for stable anaerobic digestion of vegetable waste," Renewable Energy, Elsevier, vol. 44(C), pages 206-214.
    3. Yao, Yiqing & Sheng, Hongmei & Luo, Yang & He, Mulan & Li, Xiangkai & Zhang, Hua & He, Wenliang & An, Lizhe, 2014. "Optimization of anaerobic co-digestion of Solidago canadensis L. biomass and cattle slurry," Energy, Elsevier, vol. 78(C), pages 122-127.
    4. Chandra, R. & Takeuchi, H. & Hasegawa, T., 2012. "Methane production from lignocellulosic agricultural crop wastes: A review in context to second generation of biofuel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(3), pages 1462-1476.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Simioni, Taysnara & Agustini, Caroline Borges & Dettmer, Aline & Gutterres, Mariliz, 2022. "Enhancement of biogas production by anaerobic co-digestion of leather waste with raw and pretreated wheat straw," Energy, Elsevier, vol. 253(C).
    2. Kumar, Subodh & Gandhi, Paras & Yadav, Monika & Paritosh, Kunwar & Pareek, Nidhi & Vivekanand, Vivekanand, 2019. "Weak alkaline treatment of wheat and pearl millet straw for enhanced biogas production and its economic analysis," Renewable Energy, Elsevier, vol. 139(C), pages 753-764.
    3. Dahunsi, S.O., 2019. "Liquefaction of pineapple peel: Pretreatment and process optimization," Energy, Elsevier, vol. 185(C), pages 1017-1031.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Kun & Liu, Ronghou & Sun, Chen, 2016. "A review of methane production from agricultural residues in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 857-865.
    2. Krishania, M. & Vijay, V.K. & Chandra, R., 2013. "Methane fermentation and kinetics of wheat straw pretreated substrates co-digested with cattle manure in batch assay," Energy, Elsevier, vol. 57(C), pages 359-367.
    3. Ezeilo, Uchenna R. & Wahab, Roswanira Abdul & Mahat, Naji Arafat, 2020. "Optimization studies on cellulase and xylanase production by Rhizopus oryzae UC2 using raw oil palm frond leaves as substrate under solid state fermentation," Renewable Energy, Elsevier, vol. 156(C), pages 1301-1312.
    4. Sohail Khan & Fuzhi Lu & Muhammad Kashif & Peihong Shen, 2021. "Multiple Effects of Different Nickel Concentrations on the Stability of Anaerobic Digestion of Molasses," Sustainability, MDPI, vol. 13(9), pages 1-11, April.
    5. Mohd Yasin, Nazlina Haiza & Maeda, Toshinari & Hu, Anyi & Yu, Chang-Ping & Wood, Thomas K., 2015. "CO2 sequestration by methanogens in activated sludge for methane production," Applied Energy, Elsevier, vol. 142(C), pages 426-434.
    6. Li, Wangliang & Loh, Kai-Chee & Zhang, Jingxin & Tong, Yen Wah & Dai, Yanjun, 2018. "Two-stage anaerobic digestion of food waste and horticultural waste in high-solid system," Applied Energy, Elsevier, vol. 209(C), pages 400-408.
    7. Zamri, M.F.M.A. & Hasmady, Saiful & Akhiar, Afifi & Ideris, Fazril & Shamsuddin, A.H. & Mofijur, M. & Fattah, I. M. Rizwanul & Mahlia, T.M.I., 2021. "A comprehensive review on anaerobic digestion of organic fraction of municipal solid waste," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    8. Yuan, Haiping & Zhu, Nanwen, 2016. "Progress in inhibition mechanisms and process control of intermediates and by-products in sewage sludge anaerobic digestion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 429-438.
    9. Cheng, F. & Brewer, C.E., 2021. "Conversion of protein-rich lignocellulosic wastes to bio-energy: Review and recommendations for hydrolysis + fermentation and anaerobic digestion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    10. Amal Hmaissia & Edgar Martín Hernández & Steve Boivin & Céline Vaneeckhaute, 2025. "Start-Up Strategies for Thermophilic Semi-Continuous Anaerobic Digesters: Assessing the Impact of Inoculum Source and Feed Variability on Efficient Waste-to-Energy Conversion," Sustainability, MDPI, vol. 17(11), pages 1-22, May.
    11. Mao, Chunlan & Feng, Yongzhong & Wang, Xiaojiao & Ren, Guangxin, 2015. "Review on research achievements of biogas from anaerobic digestion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 540-555.
    12. Pengfei Li & Wenzhe Li & Mingchao Sun & Xiang Xu & Bo Zhang & Yong Sun, 2018. "Evaluation of Biochemical Methane Potential and Kinetics on the Anaerobic Digestion of Vegetable Crop Residues," Energies, MDPI, vol. 12(1), pages 1-14, December.
    13. Senghor, A. & Dioh, R.M.N. & Müller, C. & Youm, I., 2017. "Cereal crops for biogas production: A review of possible impact of elevated CO2," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 548-554.
    14. Rodriguez, Cristina & Alaswad, A. & Benyounis, K.Y. & Olabi, A.G., 2017. "Pretreatment techniques used in biogas production from grass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 1193-1204.
    15. Wang, Zhongzhong & Hu, Yuansheng & Wang, Shun & Wu, Guangxue & Zhan, Xinmin, 2023. "A critical review on dry anaerobic digestion of organic waste: Characteristics, operational conditions, and improvement strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 176(C).
    16. Izydorczyk, Grzegorz & Skrzypczak, Dawid & Kocek, Daria & Mironiuk, Małgorzata & Witek-Krowiak, Anna & Moustakas, Konstantinos & Chojnacka, Katarzyna, 2020. "Valorization of bio-based post-extraction residues of goldenrod and alfalfa as energy pellets," Energy, Elsevier, vol. 194(C).
    17. Shehbaz Ali & Tawaf A Shah & Asifa Afzal & Romana Tabassum, 2018. "Exploring lignocellulosic biomass for bio-methane potential by anaerobic digestion and its economic feasibility," Energy & Environment, , vol. 29(5), pages 742-751, August.
    18. Alaswad, A. & Dassisti, M. & Prescott, T. & Olabi, A.G., 2015. "Technologies and developments of third generation biofuel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1446-1460.
    19. Ali, Ghaffar & Nitivattananon, Vilas & Abbas, Sawaid & Sabir, Muazzam, 2012. "Green waste to biogas: Renewable energy possibilities for Thailand's green markets," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 5423-5429.
    20. Suriyan Boonpiyo & Sureewan Sittijunda & Alissara Reungsang, 2018. "Co-Digestion of Napier Grass with Food Waste and Napier Silage with Food Waste for Methane Production," Energies, MDPI, vol. 11(11), pages 1-13, November.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:115:y:2018:i:c:p:139-148. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.