IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v115y2018icp1067-1074.html

Strategic gaming of wind power producers joined with thermal units in electricity markets

Author

Listed:
  • Banaei, Mohsen
  • Oloomi-Buygi, Majid
  • Zabetian-Hosseini, Seyed-Mahdi

Abstract

Wind power producers are getting ready to participate in electricity markets as well as conventional units. This poses challenges to power system operators. Wind speed forecasting error increases power imbalance at real time operation, and hence, profits of wind power producers decrease due to balancing costs. A recently proposed scheme for reducing wind power plants power imbalance and increasing their profits is to team up each wind power producer with a non-wind generating firm. The joint firm participates in the market by bidding the joint supply function as a single unit. The objectives of this paper are 1) improving the efficiency of this scheme by considering both benefits and losses of positive and negative balancing prices, 2) determining the optimal generation capacity for the joined firm for maximum profitability of the scheme, and 3) performing sensitivity analysis on different parameters to determine the range of profitability of the scheme in different conditions. In order to evaluate the efficiency of the model, behavior of other generating firms should be known. To this end, supply function equilibrium model is used to determine the optimal behavior of generating firms considering their interactions. Performance of the improved scheme is discussed using a test system.

Suggested Citation

  • Banaei, Mohsen & Oloomi-Buygi, Majid & Zabetian-Hosseini, Seyed-Mahdi, 2018. "Strategic gaming of wind power producers joined with thermal units in electricity markets," Renewable Energy, Elsevier, vol. 115(C), pages 1067-1074.
  • Handle: RePEc:eee:renene:v:115:y:2018:i:c:p:1067-1074
    DOI: 10.1016/j.renene.2017.09.007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148117308698
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2017.09.007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Brancucci Martinez-Anido, Carlo & Brinkman, Greg & Hodge, Bri-Mathias, 2016. "The impact of wind power on electricity prices," Renewable Energy, Elsevier, vol. 94(C), pages 474-487.
    2. Hiroux, C. & Saguan, M., 2010. "Large-scale wind power in European electricity markets: Time for revisiting support schemes and market designs?," Energy Policy, Elsevier, vol. 38(7), pages 3135-3145, July.
    3. Sun, Peng & Nie, Pu-yan, 2015. "A comparative study of feed-in tariff and renewable portfolio standard policy in renewable energy industry," Renewable Energy, Elsevier, vol. 74(C), pages 255-262.
    4. Dehghani, Hamed & Vahidi, Behrooz & Hosseinian, Seyed Hossein, 2017. "Wind farms participation in electricity markets considering uncertainties," Renewable Energy, Elsevier, vol. 101(C), pages 907-918.
    5. Laia, R. & Pousinho, H.M.I. & Melíco, R. & Mendes, V.M.F., 2016. "Bidding strategy of wind-thermal energy producers," Renewable Energy, Elsevier, vol. 99(C), pages 673-681.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mei, Shufan & Tan, Qinliang & Liu, Yuan & Trivedi, Anupam & Srinivasan, Dipti, 2023. "Optimal bidding strategy for virtual power plant participating in combined electricity and ancillary services market considering dynamic demand response price and integrated consumption satisfaction," Energy, Elsevier, vol. 284(C).
    2. Hao Zhong & Lanfang Li & Qiujie Wang & Xueting Wang & Xinghuo Wang, 2024. "Optimization Dispatch of Distribution Network–Prosumer Group–Prosumer Considering Flexible Reserve Resources of Prosumer," Energies, MDPI, vol. 17(22), pages 1-16, November.
    3. Han, Zhixin & Fang, Debin & Yang, Peiwen & Lei, Leyao, 2023. "Cooperative mechanisms for multi-energy complementarity in the electricity spot market," Energy Economics, Elsevier, vol. 127(PB).
    4. Hai Jin & Lianyan Xu, 2024. "Exploring Clean Energy Technology Diffusion and Development in the Yellow River Basin Amid Water Resource Constraints," Sustainability, MDPI, vol. 17(1), pages 1-21, December.
    5. Mei, Shufan & Tan, Qinliang & Trivedi, Anupam & Srinivasan, Dipti, 2024. "A two-step optimization model for virtual power plant participating in spot market based on energy storage power distribution considering comprehensive forecasting error of renewable energy output," Applied Energy, Elsevier, vol. 376(PB).
    6. Liu, Tingting & Xu, Jiuping, 2021. "Equilibrium strategy based policy shifts towards the integration of wind power in spot electricity markets: A perspective from China," Energy Policy, Elsevier, vol. 157(C).
    7. Gomes, I.L.R. & Melicio, R. & Mendes, V.M.F. & Pousinho, H.M.I., 2019. "Decision making for sustainable aggregation of clean energy in day-ahead market: Uncertainty and risk," Renewable Energy, Elsevier, vol. 133(C), pages 692-702.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiaolin Ayón & María Ángeles Moreno & Julio Usaola, 2017. "Aggregators’ Optimal Bidding Strategy in Sequential Day-Ahead and Intraday Electricity Spot Markets," Energies, MDPI, vol. 10(4), pages 1-20, April.
    2. Ahmed, Adil & Khalid, Muhammad, 2019. "A review on the selected applications of forecasting models in renewable power systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 100(C), pages 9-21.
    3. Sirin, Selahattin Murat & Yilmaz, Berna N., 2020. "Variable renewable energy technologies in the Turkish electricity market: Quantile regression analysis of the merit-order effect," Energy Policy, Elsevier, vol. 144(C).
    4. Rezana Balla, 2020. "Digitalization of Financial Services in Albania Under Restricted Measures Covid-19," European Journal of Marketing and Economics Articles, Revistia Research and Publishing, vol. 3, ejme_v3_i.
    5. Libo Zhang & Qian Du & Dequn Zhou, 2021. "Grid Parity Analysis of China’s Centralized Photovoltaic Generation under Multiple Uncertainties," Energies, MDPI, vol. 14(7), pages 1-19, March.
    6. Jean Michel Glachant & Arthur Henriot, 2013. "Melting-pots and salad bowls: the current debate on electricity market design for RES integration," Cambridge Working Papers in Economics 1354, Faculty of Economics, University of Cambridge.
    7. Shahmohammadi, Ali & Sioshansi, Ramteen & Conejo, Antonio J. & Afsharnia, Saeed, 2018. "Market equilibria and interactions between strategic generation, wind, and storage," Applied Energy, Elsevier, vol. 220(C), pages 876-892.
    8. Gianfreda, Angelica & Ravazzolo, Francesco & Rossini, Luca, 2020. "Comparing the forecasting performances of linear models for electricity prices with high RES penetration," International Journal of Forecasting, Elsevier, vol. 36(3), pages 974-986.
    9. Jungmin An & Dong-Kwan Kim & Jinyeong Lee & Sung-Kwan Joo, 2021. "Least Squares Monte Carlo Simulation-Based Decision-Making Method for Photovoltaic Investment in Korea," Sustainability, MDPI, vol. 13(19), pages 1-14, September.
    10. Xin-gang, Zhao & Ling, Wu & Ying, Zhou, 2020. "How to achieve incentive regulation under renewable portfolio standards and carbon tax policy? A China's power market perspective," Energy Policy, Elsevier, vol. 143(C).
    11. Fang, Debin & Zhao, Chaoyang & Kleit, Andrew N., 2019. "The impact of the under enforcement of RPS in China: An evolutionary approach," Energy Policy, Elsevier, vol. 135(C).
    12. Oliva H., Sebastian, 2017. "Residential energy efficiency and distributed generation - Natural partners or competition?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 932-940.
    13. Wang, Meng & Infante Ferreira, Carlos A., 2017. "Absorption heat pump cycles with NH3 – ionic liquid working pairs," Applied Energy, Elsevier, vol. 204(C), pages 819-830.
    14. Amiri-Pebdani, Sima & Alinaghian, Mahdi & Khosroshahi, Hossein, 2023. "Pricing in competitive energy supply chains considering government interventions to support CCS under cap-and-trade regulations: A game-theoretic approach," Energy Policy, Elsevier, vol. 179(C).
    15. Ángela García-Alaminos & Santiago J. Rubio, 2021. "Emission taxes and feed-in subsidies in the regulation of a polluting monopoly," SERIEs: Journal of the Spanish Economic Association, Springer;Spanish Economic Association, vol. 12(2), pages 255-279, June.
    16. Yuzhuo Zhang & Xingang Zhao & Yi Zuo & Lingzhi Ren & Ling Wang, 2017. "The Development of the Renewable Energy Power Industry under Feed-In Tariff and Renewable Portfolio Standard: A Case Study of China’s Photovoltaic Power Industry," Sustainability, MDPI, vol. 9(4), pages 1-23, March.
    17. Youhyun Lee & Inseok Seo, 2019. "Sustainability of a Policy Instrument: Rethinking the Renewable Portfolio Standard in South Korea," Sustainability, MDPI, vol. 11(11), pages 1-19, May.
    18. Willeghems, Gwen & Buysse, Jeroen, 2019. "Improving the profitability of anaerobic digestion: is the public support framework compatible with participation in the day-ahead electricity market?," Renewable Energy, Elsevier, vol. 139(C), pages 560-572.
    19. Macedo, Daniela Pereira & Marques, António Cardoso & Damette, Olivier, 2021. "The Merit-Order Effect on the Swedish bidding zone with the highest electricity flow in the Elspot market," Energy Economics, Elsevier, vol. 102(C).
    20. García-Álvarez, María Teresa & Cabeza-García, Laura & Soares, Isabel, 2017. "Analysis of the promotion of onshore wind energy in the EU: Feed-in tariff or renewable portfolio standard?," Renewable Energy, Elsevier, vol. 111(C), pages 256-264.

    More about this item

    Keywords

    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:115:y:2018:i:c:p:1067-1074. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.