IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v114y2017ipbp1238-1246.html
   My bibliography  Save this article

Land utilization performance of ground mounted photovoltaic power plants: A case study

Author

Listed:
  • Roy, Swapna
  • Ghosh, Biswajit

Abstract

Long term studies were conducted on land utilization performances of six (three 25 MWp and three 5 MWp) ground mounted photovoltaic power plants are operating in salt marshy land in western India. The PV modules in the present studies are made up with multi-crystalline silicon (mc-Si), amorphous silicon (a-Si) and cadmium telluride (CdTe) and these are the parts of a 500 MWp solar park. Studies indicated that the salty marsh land surfaces under the shadow of the PV modules were changed by enhancing its humidity and temperature level. This enhancement improved the flora formation in the humid soil possibly due to the flow of leakage current from PV module surface and land is used for agricultural activities. The combination of electrical and agricultural products reduced payback period of total investment and this makes the dual use of land in developing energy and food security. Results showed that the small capacity of mc-Si PV plant has the better electrical yield than that of its larger counterpart and the agricultural yield under a-Si and CdTe plants is better than mc-Si plants.

Suggested Citation

  • Roy, Swapna & Ghosh, Biswajit, 2017. "Land utilization performance of ground mounted photovoltaic power plants: A case study," Renewable Energy, Elsevier, vol. 114(PB), pages 1238-1246.
  • Handle: RePEc:eee:renene:v:114:y:2017:i:pb:p:1238-1246
    DOI: 10.1016/j.renene.2017.07.116
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148117307449
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2017.07.116?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Eltawil, Mohamed A. & Zhao, Zhengming, 2010. "Grid-connected photovoltaic power systems: Technical and potential problems--A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 112-129, January.
    2. Bizzarri, Federico & Brambilla, Angelo & Caretta, Lorenzo & Guardiani, Carlo, 2015. "Monitoring performance and efficiency of photovoltaic parks," Renewable Energy, Elsevier, vol. 78(C), pages 314-321.
    3. Varun & Bhat, I.K. & Prakash, Ravi, 2009. "LCA of renewable energy for electricity generation systems--A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(5), pages 1067-1073, June.
    4. Cossu, Marco & Murgia, Lelia & Ledda, Luigi & Deligios, Paola A. & Sirigu, Antonella & Chessa, Francesco & Pazzona, Antonio, 2014. "Solar radiation distribution inside a greenhouse with south-oriented photovoltaic roofs and effects on crop productivity," Applied Energy, Elsevier, vol. 133(C), pages 89-100.
    5. Dupraz, C. & Marrou, H. & Talbot, G. & Dufour, L. & Nogier, A. & Ferard, Y., 2011. "Combining solar photovoltaic panels and food crops for optimising land use: Towards new agrivoltaic schemes," Renewable Energy, Elsevier, vol. 36(10), pages 2725-2732.
    6. Spertino, Filippo & Corona, Fabio, 2013. "Monitoring and checking of performance in photovoltaic plants: A tool for design, installation and maintenance of grid-connected systems," Renewable Energy, Elsevier, vol. 60(C), pages 722-732.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mamun, Mohammad Abdullah Al & Dargusch, Paul & Wadley, David & Zulkarnain, Noor Azwa & Aziz, Ammar Abdul, 2022. "A review of research on agrivoltaic systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    2. Valerii Havrysh & Antonina Kalinichenko & Edyta Szafranek & Vasyl Hruban, 2022. "Agricultural Land: Crop Production or Photovoltaic Power Plants," Sustainability, MDPI, vol. 14(9), pages 1-23, April.
    3. Yanay Farja & Mariusz Maciejczak, 2021. "Economic Implications of Agricultural Land Conversion to Solar Power Production," Energies, MDPI, vol. 14(19), pages 1-15, September.
    4. Mladen Bošnjaković & Robert Santa & Zoran Crnac & Tomislav Bošnjaković, 2023. "Environmental Impact of PV Power Systems," Sustainability, MDPI, vol. 15(15), pages 1-26, August.
    5. Aidana Chalgynbayeva & Tamás Mizik & Attila Bai, 2022. "Cost–Benefit Analysis of Kaposvár Solar Photovoltaic Park Considering Agrivoltaic Systems," Clean Technol., MDPI, vol. 4(4), pages 1-17, October.
    6. Sanju John Thomas & Sheffy Thomas & Sudhansu S. Sahoo & Ravindran Gobinath & Mohamed M. Awad, 2022. "Allotment of Waste and Degraded Land Parcels for PV Based Solar Parks in India: Effects on Power Generation Cost and Influence on Investment Decision-Making," Sustainability, MDPI, vol. 14(3), pages 1-16, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xue, Jinlin, 2017. "Photovoltaic agriculture - New opportunity for photovoltaic applications in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1-9.
    2. Gorjian, Shiva & Bousi, Erion & Özdemir, Özal Emre & Trommsdorff, Max & Kumar, Nallapaneni Manoj & Anand, Abhishek & Kant, Karunesh & Chopra, Shauhrat S., 2022. "Progress and challenges of crop production and electricity generation in agrivoltaic systems using semi-transparent photovoltaic technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    3. La Notte, Luca & Giordano, Lorena & Calabrò, Emanuele & Bedini, Roberto & Colla, Giuseppe & Puglisi, Giovanni & Reale, Andrea, 2020. "Hybrid and organic photovoltaics for greenhouse applications," Applied Energy, Elsevier, vol. 278(C).
    4. Gulin, Marko & Pavlović, Tomislav & Vašak, Mario, 2016. "Photovoltaic panel and array static models for power production prediction: Integration of manufacturers’ and on-line data," Renewable Energy, Elsevier, vol. 97(C), pages 399-413.
    5. Dinesh, Harshavardhan & Pearce, Joshua M., 2016. "The potential of agrivoltaic systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 299-308.
    6. Javier Padilla & Carlos Toledo & Rodolfo López-Vicente & Raquel Montoya & José-Ramón Navarro & José Abad & Antonio Urbina, 2021. "Passive Heating and Cooling of Photovoltaic Greenhouses Including Thermochromic Materials," Energies, MDPI, vol. 14(2), pages 1-22, January.
    7. Elibol, Erdem & Özmen, Özge Tüzün & Tutkun, Nedim & Köysal, Oğuz, 2017. "Outdoor performance analysis of different PV panel types," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 651-661.
    8. Pérez-Alonso, J. & Pérez-García, M. & Pasamontes-Romera, M. & Callejón-Ferre, A.J., 2012. "Performance analysis and neural modelling of a greenhouse integrated photovoltaic system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 4675-4685.
    9. Hassanien, Reda Hassanien Emam & Li, Ming & Dong Lin, Wei, 2016. "Advanced applications of solar energy in agricultural greenhouses," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 989-1001.
    10. Raúl Aroca-Delgado & José Pérez-Alonso & Ángel Jesús Callejón-Ferre & Borja Velázquez-Martí, 2018. "Compatibility between Crops and Solar Panels: An Overview from Shading Systems," Sustainability, MDPI, vol. 10(3), pages 1-19, March.
    11. El Kolaly, Wael & Ma, Wenhui & Li, Ming & Darwesh, Mohammed, 2020. "The investigation of energy production and mushroom yield in greenhouse production based on mono photovoltaic cells effect," Renewable Energy, Elsevier, vol. 159(C), pages 506-518.
    12. Gao, Yuan & Dong, Jianfei & Isabella, Olindo & Santbergen, Rudi & Tan, Hairen & Zeman, Miro & Zhang, Guoqi, 2019. "Modeling and analyses of energy performances of photovoltaic greenhouses with sun-tracking functionality," Applied Energy, Elsevier, vol. 233, pages 424-442.
    13. Carlos Toledo & Alessandra Scognamiglio, 2021. "Agrivoltaic Systems Design and Assessment: A Critical Review, and a Descriptive Model towards a Sustainable Landscape Vision (Three-Dimensional Agrivoltaic Patterns)," Sustainability, MDPI, vol. 13(12), pages 1-38, June.
    14. Amaducci, Stefano & Yin, Xinyou & Colauzzi, Michele, 2018. "Agrivoltaic systems to optimise land use for electric energy production," Applied Energy, Elsevier, vol. 220(C), pages 545-561.
    15. Hassanien, Reda Hassanien Emam & Li, Ming & Yin, Fang, 2018. "The integration of semi-transparent photovoltaics on greenhouse roof for energy and plant production," Renewable Energy, Elsevier, vol. 121(C), pages 377-388.
    16. Dias, Luís & Gouveia, João Pedro & Lourenço, Paulo & Seixas, Júlia, 2019. "Interplay between the potential of photovoltaic systems and agricultural land use," Land Use Policy, Elsevier, vol. 81(C), pages 725-735.
    17. Milosavljević, Dragana D. & Pavlović, Tomislav M. & Piršl, Danica S., 2015. "Performance analysis of A grid-connected solar PV plant in Niš, republic of Serbia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 423-435.
    18. Cossu, Marco & Cossu, Andrea & Deligios, Paola A. & Ledda, Luigi & Li, Zhi & Fatnassi, Hicham & Poncet, Christine & Yano, Akira, 2018. "Assessment and comparison of the solar radiation distribution inside the main commercial photovoltaic greenhouse types in Europe," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 822-834.
    19. Jiang, Shouzheng & Tang, Dahua & Zhao, Lu & Liang, Chuan & Cui, Ningbo & Gong, Daozhi & Wang, Yaosheng & Feng, Yu & Hu, Xiaotao & Peng, Yong, 2022. "Effects of different photovoltaic shading levels on kiwifruit growth, yield and water productivity under “agrivoltaic” system in Southwest China," Agricultural Water Management, Elsevier, vol. 269(C).
    20. Cossu, Marco & Tiloca, Maria Teresa & Cossu, Andrea & Deligios, Paola A. & Pala, Tore & Ledda, Luigi, 2023. "Increasing the agricultural sustainability of closed agrivoltaic systems with the integration of vertical farming: A case study on baby-leaf lettuce," Applied Energy, Elsevier, vol. 344(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:114:y:2017:i:pb:p:1238-1246. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.