IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v95y2010i12p1276-1285.html
   My bibliography  Save this article

Hybrid causal methodology and software platform for probabilistic risk assessment and safety monitoring of socio-technical systems

Author

Listed:
  • Groth, Katrina
  • Wang, Chengdong
  • Mosleh, Ali

Abstract

This paper introduces an integrated framework and software platform for probabilistic risk assessment (PRA) and safety monitoring of complex socio-technical systems. An overview of the three-layer hybrid causal logic (HCL) modeling approach and corresponding algorithms, implemented in the Trilith software platform, are provided. The HCL approach enhances typical PRA methods by quantitatively including the influence of soft causal factors introduced by human and organizational aspects of a system. The framework allows different modeling techniques to be used for different aspects of the socio-technical system. The HCL approach combines the power of traditional event sequence diagram (ESD)event tree (ET) and fault tree (FT) techniques for modeling deterministic causal paths, with the flexibility of Bayesian belief networks for modeling non-deterministic cause–effect relationships among system elements (suitable for modeling human and organizational influences). Trilith enables analysts to construct HCL models and perform quantitative risk assessment and management of complex systems. The risk management capabilities included are HCL-based risk importance measures, hazard identification and ranking, precursor analysis, safety indicator monitoring, and root cause analysis. This paper describes the capabilities of the Trilith platform and power of the HCL algorithm by use of example risk models for a type of aviation accident (aircraft taking off from the wrong runway).

Suggested Citation

  • Groth, Katrina & Wang, Chengdong & Mosleh, Ali, 2010. "Hybrid causal methodology and software platform for probabilistic risk assessment and safety monitoring of socio-technical systems," Reliability Engineering and System Safety, Elsevier, vol. 95(12), pages 1276-1285.
  • Handle: RePEc:eee:reensy:v:95:y:2010:i:12:p:1276-1285
    DOI: 10.1016/j.ress.2010.06.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832010001390
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2010.06.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Røed, Willy & Mosleh, Ali & Vinnem, Jan Erik & Aven, Terje, 2009. "On the use of the hybrid causal logic method in offshore risk analysis," Reliability Engineering and System Safety, Elsevier, vol. 94(2), pages 445-455.
    2. Mohaghegh, Zahra & Kazemi, Reza & Mosleh, Ali, 2009. "Incorporating organizational factors into Probabilistic Risk Assessment (PRA) of complex socio-technical systems: A hybrid technique formalization," Reliability Engineering and System Safety, Elsevier, vol. 94(5), pages 1000-1018.
    3. Groen, Frank J. & Smidts, Carol & Mosleh, Ali, 2006. "QRAS—the quantitative risk assessment system," Reliability Engineering and System Safety, Elsevier, vol. 91(3), pages 292-304.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ekanem, Nsimah & Mosleh, Ali & Shen, Song-Hua & Ramos, Marilia, 2024. "Phoenix–A model-based human reliability analysis methodology: Data sources and quantitative analysis procedure," Reliability Engineering and System Safety, Elsevier, vol. 248(C).
    2. Montewka, Jakub & Ehlers, Sören & Goerlandt, Floris & Hinz, Tomasz & Tabri, Kristjan & Kujala, Pentti, 2014. "A framework for risk assessment for maritime transportation systems—A case study for open sea collisions involving RoPax vessels," Reliability Engineering and System Safety, Elsevier, vol. 124(C), pages 142-157.
    3. Katrina M Groth & Ali Mosleh, 2012. "Deriving causal Bayesian networks from human reliability analysis data: A methodology and example model," Journal of Risk and Reliability, , vol. 226(4), pages 361-379, August.
    4. Parhizkar, Tarannom & Hogenboom, Sandra & Vinnem, Jan Erik & Utne, Ingrid Bouwer, 2020. "Data driven approach to risk management and decision support for dynamic positioning systems," Reliability Engineering and System Safety, Elsevier, vol. 201(C).
    5. Mkrtchyan, L. & Podofillini, L. & Dang, V.N., 2016. "Methods for building Conditional Probability Tables of Bayesian Belief Networks from limited judgment: An evaluation for Human Reliability Application," Reliability Engineering and System Safety, Elsevier, vol. 151(C), pages 93-112.
    6. Justin Pence & Zahra Mohaghegh, 2020. "A Discourse on the Incorporation of Organizational Factors into Probabilistic Risk Assessment: Key Questions and Categorical Review," Risk Analysis, John Wiley & Sons, vol. 40(6), pages 1183-1211, June.
    7. Aven, Terje & Ylönen, Marja, 2018. "A risk interpretation of sociotechnical safety perspectives," Reliability Engineering and System Safety, Elsevier, vol. 175(C), pages 13-18.
    8. Farcasiu, M. & Prisecaru, I., 2014. "MMOSA – A new approach of the human and organizational factor analysis in PSA," Reliability Engineering and System Safety, Elsevier, vol. 123(C), pages 91-98.
    9. Stephen Thomas & Katrina M Groth, 2023. "Toward a hybrid causal framework for autonomous vehicle safety analysis," Journal of Risk and Reliability, , vol. 237(2), pages 367-388, April.
    10. Ramos, M.A. & Thieme, Christoph A. & Utne, Ingrid B. & Mosleh, A., 2020. "Human-system concurrent task analysis for maritime autonomous surface ship operation and safety," Reliability Engineering and System Safety, Elsevier, vol. 195(C).
    11. Baoping Cai & Yonghong Liu & Zengkai Liu & Xiaojie Tian & Yanzhen Zhang & Renjie Ji, 2013. "Application of Bayesian Networks in Quantitative Risk Assessment of Subsea Blowout Preventer Operations," Risk Analysis, John Wiley & Sons, vol. 33(7), pages 1293-1311, July.
    12. Mkrtchyan, L. & Podofillini, L. & Dang, V.N., 2015. "Bayesian belief networks for human reliability analysis: A review of applications and gaps," Reliability Engineering and System Safety, Elsevier, vol. 139(C), pages 1-16.
    13. Groth, Katrina M. & Swiler, Laura P., 2013. "Bridging the gap between HRA research and HRA practice: A Bayesian network version of SPAR-H," Reliability Engineering and System Safety, Elsevier, vol. 115(C), pages 33-42.
    14. Pence, Justin & Sakurahara, Tatsuya & Zhu, Xuefeng & Mohaghegh, Zahra & Ertem, Mehmet & Ostroff, Cheri & Kee, Ernie, 2019. "Data-theoretic methodology and computational platform to quantify organizational factors in socio-technical risk analysis," Reliability Engineering and System Safety, Elsevier, vol. 185(C), pages 240-260.
    15. Y-F Wang & M Xie & M S Habibullah & K-M Ng, 2011. "Quantitative risk assessment through hybrid causal logic approach," Journal of Risk and Reliability, , vol. 225(3), pages 323-332, September.
    16. Zhou, Jianfeng & Reniers, Genserik & Khakzad, Nima, 2016. "Application of event sequence diagram to evaluate emergency response actions during fire-induced domino effects," Reliability Engineering and System Safety, Elsevier, vol. 150(C), pages 202-209.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mkrtchyan, L. & Podofillini, L. & Dang, V.N., 2015. "Bayesian belief networks for human reliability analysis: A review of applications and gaps," Reliability Engineering and System Safety, Elsevier, vol. 139(C), pages 1-16.
    2. Ekanem, Nsimah & Mosleh, Ali & Shen, Song-Hua & Ramos, Marilia, 2024. "Phoenix–A model-based human reliability analysis methodology: Data sources and quantitative analysis procedure," Reliability Engineering and System Safety, Elsevier, vol. 248(C).
    3. Wu, Bing & Yip, Tsz Leung & Yan, Xinping & Guedes Soares, C., 2022. "Review of techniques and challenges of human and organizational factors analysis in maritime transportation," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    4. J Vatn, 2012. "Can we understand complex systems in terms of risk analysis?," Journal of Risk and Reliability, , vol. 226(3), pages 346-358, June.
    5. Kasai, Naoya & Matsuhashi, Shigemi & Sekine, Kazuyoshi, 2013. "Accident occurrence model for the risk analysis of industrialfacilities," Reliability Engineering and System Safety, Elsevier, vol. 114(C), pages 71-74.
    6. Sven Ove Hansson & Terje Aven, 2014. "Is Risk Analysis Scientific?," Risk Analysis, John Wiley & Sons, vol. 34(7), pages 1173-1183, July.
    7. Kim, Yochan & Park, Jinkyun & Jung, Wondea, 2017. "A quantitative measure of fitness for duty and work processes for human reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 167(C), pages 595-601.
    8. Chiming Guo & Shiyu Gong & Lin Tan & Bo Guo, 2012. "Extended GTST‐MLD for Aerospace System Safety Analysis," Risk Analysis, John Wiley & Sons, vol. 32(6), pages 1060-1071, June.
    9. Konstandinidou, Myrto & Nivolianitou, Zoe & Kefalogianni, Eirini & Caroni, Chrys, 2011. "In-depth analysis of the causal factors of incidents reported in the Greek petrochemical industry," Reliability Engineering and System Safety, Elsevier, vol. 96(11), pages 1448-1455.
    10. Eichhorn Colombo, Konrad W., 2023. "Financial resilience analysis of floating production, storage and offloading plant operated in Norwegian Arctic region: Case study using inter-/transdisciplinary system dynamics modeling and simulatio," Energy, Elsevier, vol. 268(C).
    11. Abrishami, Shokoufeh & Khakzad, Nima & Hosseini, Seyed Mahmoud, 2020. "A data-based comparison of BN-HRA models in assessing human error probability: An offshore evacuation case study," Reliability Engineering and System Safety, Elsevier, vol. 202(C).
    12. Carole Duval & Geoffrey Fallet-Fidry & Benoît Iung & Philippe Weber & Eric Levrat, 2012. "A Bayesian network-based integrated risk analysis approach for industrial systems: application to heat sink system and prospects development," Journal of Risk and Reliability, , vol. 226(5), pages 488-507, October.
    13. Tan, Samson & Moinuddin, Khalid, 2019. "Systematic review of human and organizational risks for probabilistic risk analysis in high-rise buildings," Reliability Engineering and System Safety, Elsevier, vol. 188(C), pages 233-250.
    14. Marhavilas, P.K. & Koulouriotis, D.E., 2012. "A combined usage of stochastic and quantitative risk assessment methods in the worksites: Application on an electric power provider," Reliability Engineering and System Safety, Elsevier, vol. 97(1), pages 36-46.
    15. Inger Lise Johansen & Marvin Rausand, 2014. "Defining complexity for risk assessment of sociotechnical systems: A conceptual framework," Journal of Risk and Reliability, , vol. 228(3), pages 272-290, June.
    16. Bui, Ha & Sakurahara, Tatsuya & Pence, Justin & Reihani, Seyed & Kee, Ernie & Mohaghegh, Zahra, 2019. "An algorithm for enhancing spatiotemporal resolution of probabilistic risk assessment to address emergent safety concerns in nuclear power plants," Reliability Engineering and System Safety, Elsevier, vol. 185(C), pages 405-428.
    17. Y-F Wang & M Xie & M S Habibullah & K-M Ng, 2011. "Quantitative risk assessment through hybrid causal logic approach," Journal of Risk and Reliability, , vol. 225(3), pages 323-332, September.
    18. Zhou, Jianfeng & Reniers, Genserik & Khakzad, Nima, 2016. "Application of event sequence diagram to evaluate emergency response actions during fire-induced domino effects," Reliability Engineering and System Safety, Elsevier, vol. 150(C), pages 202-209.
    19. Bandeira, Michelle Carvalho Galvão Silva Pinto & Correia, Anderson Ribeiro & Martins, Marcelo Ramos, 2018. "General model analysis of aeronautical accidents involving human and organizational factors," Journal of Air Transport Management, Elsevier, vol. 69(C), pages 137-146.
    20. Fam, Mei Ling & He, Xuhong & Konovessis, Dimitrios & Ong, Lin Seng, 2020. "Using Dynamic Bayesian Belief Network for analysing well decommissioning failures and long-term monitoring of decommissioned wells," Reliability Engineering and System Safety, Elsevier, vol. 197(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:95:y:2010:i:12:p:1276-1285. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.