Data-theoretic methodology and computational platform to quantify organizational factors in socio-technical risk analysis
Author
Abstract
Suggested Citation
DOI: 10.1016/j.ress.2018.12.020
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Rajagopal, 2014.
"The Human Factors,"
Palgrave Macmillan Books, in: Architecting Enterprise, chapter 9, pages 225-249,
Palgrave Macmillan.
- Rajagopal, 2013. "The Human Factors," Palgrave Macmillan Books, in: Managing Social Media and Consumerism, chapter 9, pages 173-194, Palgrave Macmillan.
- Schroer, Suzanne & Modarres, Mohammad, 2013. "An event classification schema for evaluating site risk in a multi-unit nuclear power plant probabilistic risk assessment," Reliability Engineering and System Safety, Elsevier, vol. 117(C), pages 40-51.
- Sakurahara, Tatsuya & Mohaghegh, Zahra & Reihani, Seyed & Kee, Ernie & Brandyberry, Mark & Rodgers, Shawn, 2018. "An integrated methodology for spatio-temporal incorporation of underlying failure mechanisms into fire probabilistic risk assessment of nuclear power plants," Reliability Engineering and System Safety, Elsevier, vol. 169(C), pages 242-257.
- Galán, S.F. & Mosleh, A. & Izquierdo, J.M., 2007. "Incorporating organizational factors into probabilistic safety assessment of nuclear power plants through canonical probabilistic models," Reliability Engineering and System Safety, Elsevier, vol. 92(8), pages 1131-1138.
- Enrique López Droguett & Ali Mosleh, 2008. "Bayesian Methodology for Model Uncertainty Using Model Performance Data," Risk Analysis, John Wiley & Sons, vol. 28(5), pages 1457-1476, October.
- Mohaghegh, Zahra & Kazemi, Reza & Mosleh, Ali, 2009. "Incorporating organizational factors into Probabilistic Risk Assessment (PRA) of complex socio-technical systems: A hybrid technique formalization," Reliability Engineering and System Safety, Elsevier, vol. 94(5), pages 1000-1018.
- Stan Kaplan, 2000. "‘Combining Probability Distributions from Experts in Risk Analysis’," Risk Analysis, John Wiley & Sons, vol. 20(2), pages 155-156, April.
- Mkrtchyan, L. & Podofillini, L. & Dang, V.N., 2015. "Bayesian belief networks for human reliability analysis: A review of applications and gaps," Reliability Engineering and System Safety, Elsevier, vol. 139(C), pages 1-16.
- Bjerga, Torbjørn & Aven, Terje & Zio, Enrico, 2016. "Uncertainty treatment in risk analysis of complex systems: The cases of STAMP and FRAM," Reliability Engineering and System Safety, Elsevier, vol. 156(C), pages 203-209.
- Laumann, Karin & Rasmussen, Martin, 2016. "Suggested improvements to the definitions of Standardized Plant Analysis of Risk-Human Reliability Analysis (SPAR-H) performance shaping factors, their levels and multipliers and the nominal tasks," Reliability Engineering and System Safety, Elsevier, vol. 145(C), pages 287-300.
- Groth, Katrina & Wang, Chengdong & Mosleh, Ali, 2010. "Hybrid causal methodology and software platform for probabilistic risk assessment and safety monitoring of socio-technical systems," Reliability Engineering and System Safety, Elsevier, vol. 95(12), pages 1276-1285.
- Mkrtchyan, L. & Podofillini, L. & Dang, V.N., 2016. "Methods for building Conditional Probability Tables of Bayesian Belief Networks from limited judgment: An evaluation for Human Reliability Application," Reliability Engineering and System Safety, Elsevier, vol. 151(C), pages 93-112.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Zhou, Jian-Lan & Lei, Yi, 2020. "A slim integrated with empirical study and network analysis for human error assessment in the railway driving process," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
- Xu, Yanwen & Kohtz, Sara & Boakye, Jessica & Gardoni, Paolo & Wang, Pingfeng, 2023. "Physics-informed machine learning for reliability and systems safety applications: State of the art and challenges," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
- Zhang, Yan & Wang, Yu-Hao & Zhao, Xu & Tong, Rui-Peng, 2023. "Dynamic probabilistic risk assessment of emergency response for intelligent coal mining face system, case study: Gas overrun scenario," Resources Policy, Elsevier, vol. 85(PB).
- Qiao, Wanguan, 2021. "Analysis and measurement of multifactor risk in underground coal mine accidents based on coupling theory," Reliability Engineering and System Safety, Elsevier, vol. 208(C).
- Sakurahara, Tatsuya & O'Shea, Nicholas & Cheng, Wen-Chi & Zhang, Sai & Reihani, Seyed & Kee, Ernie & Mohaghegh, Zahra, 2019. "Integrating renewal process modeling with Probabilistic Physics-of-Failure: Application to Loss of Coolant Accident (LOCA) frequency estimations in nuclear power plants," Reliability Engineering and System Safety, Elsevier, vol. 190(C), pages 1-1.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Justin Pence & Zahra Mohaghegh, 2020. "A Discourse on the Incorporation of Organizational Factors into Probabilistic Risk Assessment: Key Questions and Categorical Review," Risk Analysis, John Wiley & Sons, vol. 40(6), pages 1183-1211, June.
- Patriarca, Riccardo & Ramos, Marilia & Paltrinieri, Nicola & Massaiu, Salvatore & Costantino, Francesco & Di Gravio, Giulio & Boring, Ronald Laurids, 2020. "Human reliability analysis: Exploring the intellectual structure of a research field," Reliability Engineering and System Safety, Elsevier, vol. 203(C).
- Stephen Thomas & Katrina M Groth, 2023. "Toward a hybrid causal framework for autonomous vehicle safety analysis," Journal of Risk and Reliability, , vol. 237(2), pages 367-388, April.
- Ekanem, Nsimah & Mosleh, Ali & Shen, Song-Hua & Ramos, Marilia, 2024. "Phoenix–A model-based human reliability analysis methodology: Data sources and quantitative analysis procedure," Reliability Engineering and System Safety, Elsevier, vol. 248(C).
- Wu, Bing & Yip, Tsz Leung & Yan, Xinping & Guedes Soares, C., 2022. "Review of techniques and challenges of human and organizational factors analysis in maritime transportation," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
- Kim, Yochan & Park, Jinkyun & Jung, Wondea, 2017. "A quantitative measure of fitness for duty and work processes for human reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 167(C), pages 595-601.
- Tan, Samson & Moinuddin, Khalid, 2019. "Systematic review of human and organizational risks for probabilistic risk analysis in high-rise buildings," Reliability Engineering and System Safety, Elsevier, vol. 188(C), pages 233-250.
- Fam, Mei Ling & He, Xuhong & Konovessis, Dimitrios & Ong, Lin Seng, 2020. "Using Dynamic Bayesian Belief Network for analysing well decommissioning failures and long-term monitoring of decommissioned wells," Reliability Engineering and System Safety, Elsevier, vol. 197(C).
- Sakurahara, Tatsuya & Schumock, Grant & Reihani, Seyed & Kee, Ernie & Mohaghegh, Zahra, 2019. "Simulation-Informed Probabilistic Methodology for Common Cause Failure Analysis," Reliability Engineering and System Safety, Elsevier, vol. 185(C), pages 84-99.
- Mkrtchyan, L. & Podofillini, L. & Dang, V.N., 2015. "Bayesian belief networks for human reliability analysis: A review of applications and gaps," Reliability Engineering and System Safety, Elsevier, vol. 139(C), pages 1-16.
- Farcasiu, M. & Prisecaru, I., 2014. "MMOSA – A new approach of the human and organizational factor analysis in PSA," Reliability Engineering and System Safety, Elsevier, vol. 123(C), pages 91-98.
- Liu, Peng & Lyu, Xi & Qiu, Yongping & He, Jiandong & Tong, Jiejuan & Zhao, Jun & Li, Zhizhong, 2017. "Identifying key performance shaping factors in digital main control rooms of nuclear power plants: A risk-based approach," Reliability Engineering and System Safety, Elsevier, vol. 167(C), pages 264-275.
- Liu, Peng & Qiu, Yongping & Hu, Juntao & Tong, Jiejuan & Zhao, Jun & Li, Zhizhong, 2020. "Expert judgments for performance shaping Factors’ multiplier design in human reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 194(C).
- Mkrtchyan, L. & Podofillini, L. & Dang, V.N., 2016. "Methods for building Conditional Probability Tables of Bayesian Belief Networks from limited judgment: An evaluation for Human Reliability Application," Reliability Engineering and System Safety, Elsevier, vol. 151(C), pages 93-112.
- Morais, Caroline & Estrada-Lugo, Hector Diego & Tolo, Silvia & Jacques, Tiago & Moura, Raphael & Beer, Michael & Patelli, Edoardo, 2022. "Robust data-driven human reliability analysis using credal networks," Reliability Engineering and System Safety, Elsevier, vol. 218(PA).
- Chiming Guo & Shiyu Gong & Lin Tan & Bo Guo, 2012. "Extended GTST‐MLD for Aerospace System Safety Analysis," Risk Analysis, John Wiley & Sons, vol. 32(6), pages 1060-1071, June.
- Abrishami, Shokoufeh & Khakzad, Nima & Hosseini, Seyed Mahmoud, 2020. "A data-based comparison of BN-HRA models in assessing human error probability: An offshore evacuation case study," Reliability Engineering and System Safety, Elsevier, vol. 202(C).
- Carole Duval & Geoffrey Fallet-Fidry & Benoît Iung & Philippe Weber & Eric Levrat, 2012. "A Bayesian network-based integrated risk analysis approach for industrial systems: application to heat sink system and prospects development," Journal of Risk and Reliability, , vol. 226(5), pages 488-507, October.
- Faiella, Giuliana & Parand, Anam & Franklin, Bryony Dean & Chana, Prem & Cesarelli, Mario & Stanton, Neville A. & Sevdalis, Nick, 2018. "Expanding healthcare failure mode and effect analysis: A composite proactive risk analysis approach," Reliability Engineering and System Safety, Elsevier, vol. 169(C), pages 117-126.
- Zhou, Jian-Lan & Lei, Yi, 2020. "A slim integrated with empirical study and network analysis for human error assessment in the railway driving process," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
More about this item
Keywords
Probabilistic Risk Assessment (PRA); Organizational factors; Human Reliability Analysis (HRA); Text mining; Causal modeling; Big data analytics;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:185:y:2019:i:c:p:240-260. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.