IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v188y2019icp432-443.html
   My bibliography  Save this article

Degradation state mining and identification for railway point machines

Author

Listed:
  • Bian, Chong
  • Yang, Shunkun
  • Huang, Tingting
  • Xu, Qingyang
  • Liu, Jie
  • Zio, Enrico

Abstract

Critical point machine failure in railway-signal systems can lead to fatal accidents. Hence, early identification of anomalies is vital in guaranteeing reliable and safe transportation. However, most of the existing early fault diagnosis methods can only estimate the degradation trend under a specific fault mode. How to analyze the diversified degradation conditions under multiple fault modes is still a key problem. Considering the diversity of fault modes, this study proposes an early fault diagnosis method based on self-organizing feature map network and support vector machine, focusing on the use of non-fault data to simultaneously mine and accurately identify degradation states under different fault modes, to provide guidance for proactive machine maintenance. The experimental results obtained via application of this scheme to field data for railway point machines demonstrate that the proposed methodology can effectively mine and accurately identify degradation states with different machine characteristics.

Suggested Citation

  • Bian, Chong & Yang, Shunkun & Huang, Tingting & Xu, Qingyang & Liu, Jie & Zio, Enrico, 2019. "Degradation state mining and identification for railway point machines," Reliability Engineering and System Safety, Elsevier, vol. 188(C), pages 432-443.
  • Handle: RePEc:eee:reensy:v:188:y:2019:i:c:p:432-443
    DOI: 10.1016/j.ress.2019.03.044
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S095183201831144X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2019.03.044?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. An, Dawn & Kim, Nam H. & Choi, Joo-Ho, 2015. "Practical options for selecting data-driven or physics-based prognostics algorithms with reviews," Reliability Engineering and System Safety, Elsevier, vol. 133(C), pages 223-236.
    2. García, Fausto P. & Pedregal, Diego J. & Roberts, Clive, 2010. "Time series methods applied to failure prediction and detection," Reliability Engineering and System Safety, Elsevier, vol. 95(6), pages 698-703.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Jie & Xu, Yubo & Wang, Lisong, 2022. "Fault information mining with causal network for railway transportation system," Reliability Engineering and System Safety, Elsevier, vol. 220(C).
    2. Wen, Pengfei & Zhao, Shuai & Chen, Shaowei & Li, Yong, 2021. "A generalized remaining useful life prediction method for complex systems based on composite health indicator," Reliability Engineering and System Safety, Elsevier, vol. 205(C).
    3. Yang, Ningning & Wang, Zhijian & Cai, Wenan & Li, Yanfeng, 2023. "Data Regeneration Based on Multiple Degradation Processes for Remaining Useful Life Estimation," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    4. Xu, Zhaoyi & Saleh, Joseph Homer, 2021. "Machine learning for reliability engineering and safety applications: Review of current status and future opportunities," Reliability Engineering and System Safety, Elsevier, vol. 211(C).
    5. Zio, Enrico, 2022. "Prognostics and Health Management (PHM): Where are we and where do we (need to) go in theory and practice," Reliability Engineering and System Safety, Elsevier, vol. 218(PA).
    6. Chiachío, Manuel & Saleh, Ali & Naybour, Susannah & Chiachío, Juan & Andrews, John, 2022. "Reduction of Petri net maintenance modeling complexity via Approximate Bayesian Computation," Reliability Engineering and System Safety, Elsevier, vol. 222(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jiang, Deyin & Chen, Tianyu & Xie, Juanzhang & Cui, Weimin & Song, Bifeng, 2023. "A mechanical system reliability degradation analysis and remaining life estimation method——With the example of an aircraft hatch lock mechanism," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    2. Xiangang Cao & Pengfei Li & Song Ming, 2021. "Remaining Useful Life Prediction-Based Maintenance Decision Model for Stochastic Deterioration Equipment under Data-Driven," Sustainability, MDPI, vol. 13(15), pages 1-19, July.
    3. Mishra, Madhav & Martinsson, Jesper & Rantatalo, Matti & Goebel, Kai, 2018. "Bayesian hierarchical model-based prognostics for lithium-ion batteries," Reliability Engineering and System Safety, Elsevier, vol. 172(C), pages 25-35.
    4. Zang, Yu & Shangguan, Wei & Cai, Baigen & Wang, Huasheng & Pecht, Michael. G., 2021. "Hybrid remaining useful life prediction method. A case study on railway D-cables," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
    5. Vega, Manuel A. & Hu, Zhen & Todd, Michael D., 2020. "Optimal maintenance decisions for deteriorating quoin blocks in miter gates subject to uncertainty in the condition rating protocol," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    6. Kamran Javed & Rafael Gouriveau & Xiang Li & Noureddine Zerhouni, 2018. "Tool wear monitoring and prognostics challenges: a comparison of connectionist methods toward an adaptive ensemble model," Journal of Intelligent Manufacturing, Springer, vol. 29(8), pages 1873-1890, December.
    7. Prakash, Om & Samantaray, Arun Kumar, 2021. "Prognosis of Dynamical System Components with Varying Degradation Patterns using model–data–fusion," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
    8. Tan, Tu Guang & Jang, Sunghyon & Yamaguchi, Akira, 2019. "A novel method for risk-informed decision-making under non-ideal Instrumentation and Control conditions through the application of Bayes’ Theorem," Reliability Engineering and System Safety, Elsevier, vol. 188(C), pages 463-472.
    9. Márquez, Fausto Pedro García & Pérez, Jesús María Pinar & Marugán, Alberto Pliego & Papaelias, Mayorkinos, 2016. "Identification of critical components of wind turbines using FTA over the time," Renewable Energy, Elsevier, vol. 87(P2), pages 869-883.
    10. Wang, Yiwei & Gogu, Christian & Kim, Nam H. & Haftka, Raphael T. & Binaud, Nicolas & Bes, Christian, 2019. "Noise-dependent ranking of prognostics algorithms based on discrepancy without true damage information," Reliability Engineering and System Safety, Elsevier, vol. 184(C), pages 86-100.
    11. Nagulapati, Vijay Mohan & Lee, Hyunjun & Jung, DaWoon & Brigljevic, Boris & Choi, Yunseok & Lim, Hankwon, 2021. "Capacity estimation of batteries: Influence of training dataset size and diversity on data driven prognostic models," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    12. Zhou, Shenghua & Yang, Yifan & Ng, S. Thomas & Xu, J. Frank & Li, Dezhi, 2020. "Integrating data-driven and physics-based approaches to characterize failures of interdependent infrastructures," International Journal of Critical Infrastructure Protection, Elsevier, vol. 31(C).
    13. Kim, Hyeonmin & Kim, Jung Taek & Heo, Gyunyoung, 2018. "Failure rate updates using condition-based prognostics in probabilistic safety assessments," Reliability Engineering and System Safety, Elsevier, vol. 175(C), pages 225-233.
    14. Zhao, Zeqi & Bin Liang, & Wang, Xueqian & Lu, Weining, 2017. "Remaining useful life prediction of aircraft engine based on degradation pattern learning," Reliability Engineering and System Safety, Elsevier, vol. 164(C), pages 74-83.
    15. Narender Singh & Dibakor Boruah & Jeroen D. M. De Kooning & Wim De Waele & Lieven Vandevelde, 2023. "Impact Assessment of Dynamic Loading Induced by the Provision of Frequency Containment Reserve on the Main Bearing Lifetime of a Wind Turbine," Energies, MDPI, vol. 16(6), pages 1-14, March.
    16. Wang, Hai-Kun & Li, Yan-Feng & Huang, Hong-Zhong & Jin, Tongdan, 2017. "Near-extreme system condition and near-extreme remaining useful time for a group of products," Reliability Engineering and System Safety, Elsevier, vol. 162(C), pages 103-110.
    17. Chiachío, Manuel & Chiachío, Juan & Sankararaman, Shankar & Goebel, Kai & Andrews, John, 2017. "A new algorithm for prognostics using Subset Simulation," Reliability Engineering and System Safety, Elsevier, vol. 168(C), pages 189-199.
    18. Liu, Yingchao & Hu, Xiaofeng & Zhang, Wenjuan, 2019. "Remaining useful life prediction based on health index similarity," Reliability Engineering and System Safety, Elsevier, vol. 185(C), pages 502-510.
    19. Feng, Qiang & Bi, Xiong & Zhao, Xiujie & Chen, Yiran & Sun, Bo, 2017. "Heuristic hybrid game approach for fleet condition-based maintenance planning," Reliability Engineering and System Safety, Elsevier, vol. 157(C), pages 166-176.
    20. González-Muñiz, Ana & Díaz, Ignacio & Cuadrado, Abel A. & García-Pérez, Diego, 2022. "Health indicator for machine condition monitoring built in the latent space of a deep autoencoder," Reliability Engineering and System Safety, Elsevier, vol. 224(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:188:y:2019:i:c:p:432-443. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.