IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v156y2016icp185-194.html
   My bibliography  Save this article

Comparing and integrating the NUSAP notational scheme with an uncertainty based risk perspective

Author

Listed:
  • Berner, Christine Louise
  • Flage, Roger

Abstract

Efforts to develop approaches to represent uncertainty in risk assessments follow both quantitative and semi-quantitative lines, where semi-quantitative is here to be understood as quantitative representation supplemented with qualitative assessments of aspects not sufficiently and appropriately captured by the produced numbers. The latter type of approach can be referred to as extended quantitative risk assessment and has parallels with the so-called NUSAP notational scheme of uncertainty and quality in science for policy. In the present paper we analyse the parallels that exist between NUSAP and a general description of risk as conceptualised in the recently published Society for Risk Analysis glossary. In addition to obtaining insights at the fundamental level into different approaches to describe risk, an objective is to explore whether aspects from the NUSAP notational scheme can be used within the context of and to improve current methods for extended quantitative risk assessment consistent with the general description of risk. We conclude that there are strong parallels between the two approaches and that particularly the use of visualisation tools in NUSAP can advantageously be utilised in extended quantitative risk assessments. A short example from the oil and gas industry is used to illustrate how this can be done.

Suggested Citation

  • Berner, Christine Louise & Flage, Roger, 2016. "Comparing and integrating the NUSAP notational scheme with an uncertainty based risk perspective," Reliability Engineering and System Safety, Elsevier, vol. 156(C), pages 185-194.
  • Handle: RePEc:eee:reensy:v:156:y:2016:i:c:p:185-194
    DOI: 10.1016/j.ress.2016.08.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832016303295
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2016.08.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Johansson, Jonas & Hassel, Henrik & Zio, Enrico, 2013. "Reliability and vulnerability analyses of critical infrastructures: Comparing two approaches in the context of power systems," Reliability Engineering and System Safety, Elsevier, vol. 120(C), pages 27-38.
    2. Ides Boone & Yves Van der Stede & Jeroen Dewulf & Winy Messens & Marc Aerts & Georges Daube & Koen Mintiens, 2010. "NUSAP: a method to evaluate the quality of assumptions in quantitative microbial risk assessment," Journal of Risk Research, Taylor & Francis Journals, vol. 13(3), pages 337-352, April.
    3. Funtowicz, Silvio O. & Ravetz, Jerome R., 1994. "The worth of a songbird: ecological economics as a post-normal science," Ecological Economics, Elsevier, vol. 10(3), pages 197-207, August.
    4. Aven, Terje, 2013. "Practical implications of the new risk perspectives," Reliability Engineering and System Safety, Elsevier, vol. 115(C), pages 136-145.
    5. Aven, Terje, 2015. "Implications of black swans to the foundations and practice of risk assessment and management," Reliability Engineering and System Safety, Elsevier, vol. 134(C), pages 83-91.
    6. Laes, Erik & Meskens, Gaston & van der Sluijs, Jeroen P., 2011. "On the contribution of external cost calculations to energy system governance: The case of a potential large-scale nuclear accident," Energy Policy, Elsevier, vol. 39(9), pages 5664-5673, September.
    7. Aven, Terje, 2008. "A semi-quantitative approach to risk analysis, as an alternative to QRAs," Reliability Engineering and System Safety, Elsevier, vol. 93(6), pages 790-797.
    8. Goerlandt, Floris & Montewka, Jakub, 2015. "Maritime transportation risk analysis: Review and analysis in light of some foundational issues," Reliability Engineering and System Safety, Elsevier, vol. 138(C), pages 115-134.
    9. Berner, C. & Flage, R., 2016. "Strengthening quantitative risk assessments by systematic treatment of uncertain assumptions," Reliability Engineering and System Safety, Elsevier, vol. 151(C), pages 46-59.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Berner, Christine Louise & Flage, Roger, 2017. "Creating risk management strategies based on uncertain assumptions and aspects from assumption-based planning," Reliability Engineering and System Safety, Elsevier, vol. 167(C), pages 10-19.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Berner, Christine Louise & Flage, Roger, 2017. "Creating risk management strategies based on uncertain assumptions and aspects from assumption-based planning," Reliability Engineering and System Safety, Elsevier, vol. 167(C), pages 10-19.
    2. Bani-Mustafa, Tasneem & Flage, Roger & Vasseur, Dominique & Zeng, Zhiguo & Zio, Enrico, 2020. "An extended method for evaluating assumptions deviations in quantitative risk assessment and its application to external flooding risk assessment of a nuclear power plant," Reliability Engineering and System Safety, Elsevier, vol. 200(C).
    3. Aven, Terje, 2016. "Risk assessment and risk management: Review of recent advances on their foundation," European Journal of Operational Research, Elsevier, vol. 253(1), pages 1-13.
    4. Tasneem Bani-Mustafa & Nicola Pedroni & Enrico Zio & Dominique Vasseur & Francois Beaudouin, 2020. "A hierarchical tree-based decision-making approach for assessing the relative trustworthiness of risk assessment models," Journal of Risk and Reliability, , vol. 234(6), pages 748-763, December.
    5. Bjørnsen, Kjartan & Selvik, Jon Tømmerås & Aven, Terje, 2019. "A semi-quantitative assessment process for improved use of the expected value of information measure in safety management," Reliability Engineering and System Safety, Elsevier, vol. 188(C), pages 494-502.
    6. Aven, Terje, 2017. "Improving risk characterisations in practical situations by highlighting knowledge aspects, with applications to risk matrices," Reliability Engineering and System Safety, Elsevier, vol. 167(C), pages 42-48.
    7. Aven, Terje, 2017. "How some types of risk assessments can support resilience analysis and management," Reliability Engineering and System Safety, Elsevier, vol. 167(C), pages 536-543.
    8. Beyza, Jesus & Gil, Pablo & Masera, Marcelo & Yusta, Jose M., 2020. "Security assessment of cross-border electricity interconnections," Reliability Engineering and System Safety, Elsevier, vol. 201(C).
    9. Flage, Roger & Askeland, Tore, 2020. "Assumptions in quantitative risk assessments: When explicit and when tacit?," Reliability Engineering and System Safety, Elsevier, vol. 197(C).
    10. Roger Flage & Terje Aven & Enrico Zio & Piero Baraldi, 2014. "Concerns, Challenges, and Directions of Development for the Issue of Representing Uncertainty in Risk Assessment," Risk Analysis, John Wiley & Sons, vol. 34(7), pages 1196-1207, July.
    11. Langdalen, Henrik & Abrahamsen, Eirik Bjorheim & Abrahamsen, HÃ¥kon Bjorheim, 2020. "A New Framework To Idenitfy And Assess Hidden Assumptions In The Background Knowledge Of A Risk Assessment," Reliability Engineering and System Safety, Elsevier, vol. 200(C).
    12. Aven, Terje, 2020. "Three influential risk foundation papers from the 80s and 90s: Are they still state-of-the-art?," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    13. Aven, Terje & Kristensen, Vidar, 2019. "How the distinction between general knowledge and specific knowledge can improve the foundation and practice of risk assessment and risk-informed decision-making," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    14. Khan, Bushra & Khan, Faisal & Veitch, Brian & Yang, Ming, 2018. "An operational risk analysis tool to analyze marine transportation in Arctic waters," Reliability Engineering and System Safety, Elsevier, vol. 169(C), pages 485-502.
    15. Su, Huai & Zio, Enrico & Zhang, Jinjun & Li, Xueyi, 2018. "A systematic framework of vulnerability analysis of a natural gas pipeline network," Reliability Engineering and System Safety, Elsevier, vol. 175(C), pages 79-91.
    16. Christine L. Berner & Andrea Staid & Roger Flage & Seth D. Guikema, 2017. "The Use of Simulation to Reduce the Domain of “Black Swans” with Application to Hurricane Impacts to Power Systems," Risk Analysis, John Wiley & Sons, vol. 37(10), pages 1879-1897, October.
    17. Marek Stawowy & Adam Rosiński & Mirosław Siergiejczyk & Krzysztof Perlicki, 2021. "Quality and Reliability-Exploitation Modeling of Power Supply Systems," Energies, MDPI, vol. 14(9), pages 1-16, May.
    18. Xueni Gou & Jasmine Siu Lee Lam, 2019. "Risk analysis of marine cargoes and major port disruptions," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 21(4), pages 497-523, December.
    19. Luks, Fred & Siebenhuner, Bernd, 2007. "Transdisciplinarity for social learning? The contribution of the German socio-ecological research initiative to sustainability governance," Ecological Economics, Elsevier, vol. 63(2-3), pages 418-426, August.
    20. Ramos-Martin, Jesus, 2003. "Empiricism in ecological economics: a perspective from complex systems theory," Ecological Economics, Elsevier, vol. 46(3), pages 387-398, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:156:y:2016:i:c:p:185-194. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.