IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v200y2020ics0951832019307938.html
   My bibliography  Save this article

A New Framework To Idenitfy And Assess Hidden Assumptions In The Background Knowledge Of A Risk Assessment

Author

Listed:
  • Langdalen, Henrik
  • Abrahamsen, Eirik Bjorheim
  • Abrahamsen, HÃ¥kon Bjorheim

Abstract

A risk assessment has a more or less subjective nature, as the analyst needs to make assumptions, analyse data, use models, and so on, to produce risk-related knowledge of the phenomena of interest. This background knowledge that forms the foundation of a risk assessment can be more or less strong, implying that it needs to be taken into consideration when describing and communicating risks. To meet this challenge, different methods have been developed to evaluate and inform the decision-maker about the strength of the background knowledge. For all these methods to be fully informative, the content of the background knowledge needs to be of good quality, covering, for example, all the relevant assumptions. To identify all the relevant assumptions, however, is not a trivial task, and the risk of missing assumptions increases with the complexity of the situation of interest. Hidden assumptions, which are not considered or identified, may induce false confidence in the risk assessment, its results and recommendations. This paper suggests a framework, using a systems approach, to identify and assess the background knowledge, as a means to reduce the risk of missing critical knowledge and obtain a more complete background knowledge, on which risk can be assessed.

Suggested Citation

  • Langdalen, Henrik & Abrahamsen, Eirik Bjorheim & Abrahamsen, HÃ¥kon Bjorheim, 2020. "A New Framework To Idenitfy And Assess Hidden Assumptions In The Background Knowledge Of A Risk Assessment," Reliability Engineering and System Safety, Elsevier, vol. 200(C).
  • Handle: RePEc:eee:reensy:v:200:y:2020:i:c:s0951832019307938
    DOI: 10.1016/j.ress.2020.106909
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832019307938
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2020.106909?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Papazoglou, Ioannis A. & Ale, Ben J.M., 2007. "A logical model for quantification of occupational risk," Reliability Engineering and System Safety, Elsevier, vol. 92(6), pages 785-803.
    2. Zio, E., 2018. "The future of risk assessment," Reliability Engineering and System Safety, Elsevier, vol. 177(C), pages 176-190.
    3. Terje Aven, 2018. "An Emerging New Risk Analysis Science: Foundations and Implications," Risk Analysis, John Wiley & Sons, vol. 38(5), pages 876-888, May.
    4. Rajagopal, 2014. "The Human Factors," Palgrave Macmillan Books, in: Architecting Enterprise, chapter 9, pages 225-249, Palgrave Macmillan.
    5. Abrahamsen, Eirik Bjorheim & Moharamzadeh, Alireza & Abrahamsen, Håkon Bjorheim & Asche, Frank & Heide, Bjørnar & Milazzo, Maria Francesca, 2018. "Are too many safety measures crowding each other out?," Reliability Engineering and System Safety, Elsevier, vol. 174(C), pages 108-113.
    6. Aven, Terje & Pedersen, Linda Martens, 2014. "On how to understand and present the uncertainties in production assurance analyses, with a case study related to a subsea production system," Reliability Engineering and System Safety, Elsevier, vol. 124(C), pages 165-170.
    7. Leif Inge Kjærvoll Sørskår & Eirik Bjorheim Abrahamsen & Håkon Bjorheim Abrahamsen, 2019. "On the use of economic evaluation of new technology in helicopter emergency medical services," International Journal of Business Continuity and Risk Management, Inderscience Enterprises Ltd, vol. 9(1), pages 1-23.
    8. Yacov Y. Haimes, 2012. "Systems‐Based Guiding Principles for Risk Modeling, Planning, Assessment, Management, and Communication," Risk Analysis, John Wiley & Sons, vol. 32(9), pages 1451-1467, September.
    9. Berner, C. & Flage, R., 2016. "Strengthening quantitative risk assessments by systematic treatment of uncertain assumptions," Reliability Engineering and System Safety, Elsevier, vol. 151(C), pages 46-59.
    10. Zio, Enrico, 2016. "Challenges in the vulnerability and risk analysis of critical infrastructures," Reliability Engineering and System Safety, Elsevier, vol. 152(C), pages 137-150.
    11. Aven, Terje, 2013. "Practical implications of the new risk perspectives," Reliability Engineering and System Safety, Elsevier, vol. 115(C), pages 136-145.
    12. Elisabeth Paté‐Cornell, 2002. "Finding and Fixing Systems Weaknesses: Probabilistic Methods and Applications of Engineering Risk Analysis," Risk Analysis, John Wiley & Sons, vol. 22(2), pages 319-334, April.
    13. Jensen, Anders & Aven, Terje, 2018. "A new definition of complexity in a risk analysis setting," Reliability Engineering and System Safety, Elsevier, vol. 171(C), pages 169-173.
    14. Aven, Terje & Ylönen, Marja, 2018. "A risk interpretation of sociotechnical safety perspectives," Reliability Engineering and System Safety, Elsevier, vol. 175(C), pages 13-18.
    15. Leveson, Nancy, 2015. "A systems approach to risk management through leading safety indicators," Reliability Engineering and System Safety, Elsevier, vol. 136(C), pages 17-34.
    16. Eirik Bjorheim Abrahamsen & Jon Tømmerås Selvik & Hallvard Berg, 2016. "Prioritising of safety measures in land use planning: on how to merge a risk-based approach with a cost-benefit analysis approach," International Journal of Business Continuity and Risk Management, Inderscience Enterprises Ltd, vol. 6(3), pages 182-196.
    17. K. Eidesen & S. J. M. Sollid & T. Aven, 2009. "Risk assessment in critical care medicine: a tool to assess patient safety," Journal of Risk Research, Taylor & Francis Journals, vol. 12(3-4), pages 281-294, June.
    18. Jeroen P. Van Der Sluijs & Matthieu Craye & Silvio Funtowicz & Penny Kloprogge & Jerry Ravetz & James Risbey, 2005. "Combining Quantitative and Qualitative Measures of Uncertainty in Model‐Based Environmental Assessment: The NUSAP System," Risk Analysis, John Wiley & Sons, vol. 25(2), pages 481-492, April.
    19. Terje Aven & Ortwin Renn, 2010. "Risk Management and Governance," Risk, Governance and Society, Springer, number 978-3-642-13926-0, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hai-Long Zhu & Shan-Shan Liu & Yuan-Yuan Qu & Xiao-Xia Han & Wei He & You Cao, 2022. "A new risk assessment method based on belief rule base and fault tree analysis," Journal of Risk and Reliability, , vol. 236(3), pages 420-438, June.
    2. Maria-Teresa Bosch-Badia & Joan Montllor-Serrats & Maria-Antonia Tarrazon-Rodon, 2020. "Risk Analysis through the Half-Normal Distribution," Mathematics, MDPI, vol. 8(11), pages 1-27, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Abrahamsen, Eirik Bjorheim & Selvik, Jon Tømmerås & Milazzo, Maria Francesca & Langdalen, Henrik & Dahl, Roy Endre & Bansal, Surbhi & Abrahamsen, Håkon Bjorheim, 2021. "On the use of the ‘Return Of Safety Investments’ (ROSI) measure for decision-making in the chemical processing industry," Reliability Engineering and System Safety, Elsevier, vol. 210(C).
    2. Aven, Terje & Zio, Enrico, 2021. "Globalization and global risk: How risk analysis needs to be enhanced to be effective in confronting current threats," Reliability Engineering and System Safety, Elsevier, vol. 205(C).
    3. Khastgir, Siddartha & Brewerton, Simon & Thomas, John & Jennings, Paul, 2021. "Systems Approach to Creating Test Scenarios for Automated Driving Systems," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    4. Bjørnsen, Kjartan & Selvik, Jon Tømmerås & Aven, Terje, 2019. "A semi-quantitative assessment process for improved use of the expected value of information measure in safety management," Reliability Engineering and System Safety, Elsevier, vol. 188(C), pages 494-502.
    5. Tasneem Bani-Mustafa & Nicola Pedroni & Enrico Zio & Dominique Vasseur & Francois Beaudouin, 2020. "A hierarchical tree-based decision-making approach for assessing the relative trustworthiness of risk assessment models," Journal of Risk and Reliability, , vol. 234(6), pages 748-763, December.
    6. Berner, Christine Louise & Flage, Roger, 2017. "Creating risk management strategies based on uncertain assumptions and aspects from assumption-based planning," Reliability Engineering and System Safety, Elsevier, vol. 167(C), pages 10-19.
    7. Read, G.J.M. & Naweed, A. & Salmon, P.M., 2019. "Complexity on the rails: A systems-based approach to understanding safety management in rail transport," Reliability Engineering and System Safety, Elsevier, vol. 188(C), pages 352-365.
    8. Terje Aven, 2019. "The Call for a Shift from Risk to Resilience: What Does it Mean?," Risk Analysis, John Wiley & Sons, vol. 39(6), pages 1196-1203, June.
    9. Langdalen, Henrik & Abrahamsen, Eirik Bjorheim & Selvik, Jon Tømmerås, 2020. "On the importance of systems thinking when using the ALARP principle for risk management," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    10. Wang, Wei & Cammi, Antonio & Di Maio, Francesco & Lorenzi, Stefano & Zio, Enrico, 2018. "A Monte Carlo-based exploration framework for identifying components vulnerable to cyber threats in nuclear power plants," Reliability Engineering and System Safety, Elsevier, vol. 175(C), pages 24-37.
    11. Zio, E., 2018. "The future of risk assessment," Reliability Engineering and System Safety, Elsevier, vol. 177(C), pages 176-190.
    12. Antonovsky, A. & Pollock, C. & Straker, L., 2016. "System reliability as perceived by maintenance personnel on petroleum production facilities," Reliability Engineering and System Safety, Elsevier, vol. 152(C), pages 58-65.
    13. Faiella, Giuliana & Parand, Anam & Franklin, Bryony Dean & Chana, Prem & Cesarelli, Mario & Stanton, Neville A. & Sevdalis, Nick, 2018. "Expanding healthcare failure mode and effect analysis: A composite proactive risk analysis approach," Reliability Engineering and System Safety, Elsevier, vol. 169(C), pages 117-126.
    14. Liu, Peng & Zhang, Yawen & He, Zhen, 2019. "The effect of population age on the acceptable safety of self-driving vehicles," Reliability Engineering and System Safety, Elsevier, vol. 185(C), pages 341-347.
    15. Aven, Terje & Krohn, Bodil S., 2014. "A new perspective on how to understand, assess and manage risk and the unforeseen," Reliability Engineering and System Safety, Elsevier, vol. 121(C), pages 1-10.
    16. Feng, Jian Rui & Zhao, Meng-ke & Lu, Shou-xiang, 2024. "Accident spread and risk propagation mechanism in complex industrial system network," Reliability Engineering and System Safety, Elsevier, vol. 244(C).
    17. Hao, Zhaojun & Di Maio, Francesco & Zio, Enrico, 2023. "A sequential decision problem formulation and deep reinforcement learning solution of the optimization of O&M of cyber-physical energy systems (CPESs) for reliable and safe power production and supply," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    18. Thieme, Christoph A. & Utne, Ingrid B., 2017. "Safety performance monitoring of autonomous marine systems," Reliability Engineering and System Safety, Elsevier, vol. 159(C), pages 264-275.
    19. Berner, Christine Louise & Flage, Roger, 2016. "Comparing and integrating the NUSAP notational scheme with an uncertainty based risk perspective," Reliability Engineering and System Safety, Elsevier, vol. 156(C), pages 185-194.
    20. Bjerga, Torbjørn & Aven, Terje & Zio, Enrico, 2016. "Uncertainty treatment in risk analysis of complex systems: The cases of STAMP and FRAM," Reliability Engineering and System Safety, Elsevier, vol. 156(C), pages 203-209.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:200:y:2020:i:c:s0951832019307938. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.