IDEAS home Printed from https://ideas.repec.org/a/eee/recore/v88y2014icp76-84.html
   My bibliography  Save this article

The Austrian silver cycle: A material flow analysis

Author

Listed:
  • Gsodam, Petra
  • Lassnig, Melanie
  • Kreuzeder, Andreas
  • Mrotzek, Maximilian

Abstract

Silver (Ag) is a precious metal of increasing importance. Besides its classical use as a valuable, it is applied in an increasing number of industrial products due to its advantageous chemical properties. As silver is considered a non-renewable resource, it is becoming more and more relevant for individual countries to gain a better understanding of their domestic silver material flows. In our study, a material flow analysis (MFA) of silver in Austria for the period 2012 was carried out, the results of which reveal the major silver flows in the country as well as the imports and exports outside the country. As there is no extraction of silver ore in Austria, the country is depending on silver imports and recycling. Furthermore, the role of the silver coin production that is of considerable importance in Austria is highlighted. The results may help, on a policy level, to determine silver use indicators and support the development of strategies for resource, waste and environmental management of silver. On a modeling level, the results may function as an example for future silver MFA studies in different countries.

Suggested Citation

  • Gsodam, Petra & Lassnig, Melanie & Kreuzeder, Andreas & Mrotzek, Maximilian, 2014. "The Austrian silver cycle: A material flow analysis," Resources, Conservation & Recycling, Elsevier, vol. 88(C), pages 76-84.
  • Handle: RePEc:eee:recore:v:88:y:2014:i:c:p:76-84
    DOI: 10.1016/j.resconrec.2014.05.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0921344914000986
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.resconrec.2014.05.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. T.E. Graedel & Marlen Bertram & Barbara Reck, 2005. "Exploratory Data Analysis of the Multilevel Anthropogenic Zinc Cycle," Journal of Industrial Ecology, Yale University, vol. 9(3), pages 91-108, July.
    2. Lanzano, T. & Bertram, M. & De Palo, M. & Wagner, C. & Zyla, K. & Graedel, T.E., 2006. "The contemporary European silver cycle," Resources, Conservation & Recycling, Elsevier, vol. 46(1), pages 27-43.
    3. Huang, Chu-Long & Vause, Jonathan & Ma, Hwong-Wen & Yu, Chang-Ping, 2012. "Using material/substance flow analysis to support sustainable development assessment: A literature review and outlook," Resources, Conservation & Recycling, Elsevier, vol. 68(C), pages 104-116.
    4. T. E. Graedel & Dick van Beers & Marlen Bertram & Kensuke Fuse & Robert B. Gordon & Alexander Gritsinin & Ermelinda M. Harper & Amit Kapur & Robert J. Klee & Reid Lifset & Laiq Memon & Sabrina Spatari, 2005. "The Multilevel Cycle of Anthropogenic Zinc," Journal of Industrial Ecology, Yale University, vol. 9(3), pages 67-90, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sourabh, Shalinee & Pavithran, Sagar & Menon, Balagopal G. & Mahanty, Biswajit, 2023. "Econometric modeling for the influence of economic variables on secondary copper production in India," Resources Policy, Elsevier, vol. 86(PB).
    2. Fu, Xinkai & Ueland, Stian M. & Olivetti, Elsa, 2017. "Econometric modeling of recycled copper supply," Resources, Conservation & Recycling, Elsevier, vol. 122(C), pages 219-226.
    3. Kelly, Adam, 2025. "Is all that now glitters sufficient? An investigation of a gold resource cap in Australia," Resources Policy, Elsevier, vol. 103(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yuhua Guo & Junmao Qie & Chunxia Zhang & Yuantao Yang, 2021. "Material flow analysis of zinc during the manufacturing process in integrated steel mills in China," Journal of Industrial Ecology, Yale University, vol. 25(4), pages 1009-1020, August.
    2. Klinglmair, Manfred & Fellner, Johann, 2011. "Historical iron and steel recovery in times of raw material shortage: The case of Austria during World War I," Ecological Economics, Elsevier, vol. 72(C), pages 179-187.
    3. Yang, Honghua & Ma, Linwei & Li, Zheng, 2023. "Tracing China's steel use from steel flows in the production system to steel footprints in the consumption system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 172(C).
    4. Daigo, Ichiro & Osako, Shun & Adachi, Yoshihiro & Matsuno, Yasunari, 2014. "Time-series analysis of global zinc demand associated with steel," Resources, Conservation & Recycling, Elsevier, vol. 82(C), pages 35-40.
    5. Junxue Zhang & Lin Ma, 2021. "Urban ecological security dynamic analysis based on an innovative emergy ecological footprint method," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(11), pages 16163-16191, November.
    6. Tong, Lu & Geng, Yong & Mei, Yueru & Gao, Ziyan & Liu, Sijie, 2024. "Mapping the anthropogenic zinc cycle in China from 2000 to 2021: A dynamic material flow analysis," Resources Policy, Elsevier, vol. 99(C).
    7. Mao, J.S. & Dong, Jaimee & Graedel, T.E., 2008. "The multilevel cycle of anthropogenic lead," Resources, Conservation & Recycling, Elsevier, vol. 52(8), pages 1050-1057.
    8. Huang, Chu-Long & Vause, Jonathan & Ma, Hwong-Wen & Yu, Chang-Ping, 2012. "Using material/substance flow analysis to support sustainable development assessment: A literature review and outlook," Resources, Conservation & Recycling, Elsevier, vol. 68(C), pages 104-116.
    9. Dubey, Rameshwar & Gunasekaran, Angappa & Childe, Stephen J. & Papadopoulos, Thanos & Wamba, Samuel Fosso & Song, Malin, 2016. "Towards a theory of sustainable consumption and production: Constructs and measurement," Resources, Conservation & Recycling, Elsevier, vol. 106(C), pages 78-89.
    10. Sadam Hussain & Edmund Ntom Udemba & Firat Emir & Nazakat-Ullah Khan & Wathek Chammam & Anis Riahi, 2024. "Assessing sustainable development with the forces of technological innovation, entrepreneurial activity and energy consumption: Insight from asymmetric and bootstrap causality methods," Energy & Environment, , vol. 35(6), pages 3165-3185, September.
    11. Wang, Peng & Jiang, Zeyi & Geng, Xinyi & Hao, Shiyu & Zhang, Xinxin, 2014. "Quantification of Chinese steel cycle flow: Historical status and future options," Resources, Conservation & Recycling, Elsevier, vol. 87(C), pages 191-199.
    12. Choi, Chul Hun & Cao, Jinjian & Zhao, Fu, 2016. "System Dynamics Modeling of Indium Material Flows under Wide Deployment of Clean Energy Technologies," Resources, Conservation & Recycling, Elsevier, vol. 114(C), pages 59-71.
    13. Lee, Chia-ho & Chen, Pi-cheng & Ma, Hwong-wen, 2012. "Direct and indirect lead-containing waste discharge in the electrical and electronic supply chain," Resources, Conservation & Recycling, Elsevier, vol. 68(C), pages 29-35.
    14. Zhiyong Zhou & Jianhui Huang & Ming Li & Yao Lu, 2022. "The Dynamic Evolution of the Material Flow of Lithium Resources in China," Sustainability, MDPI, vol. 14(24), pages 1-19, December.
    15. Fu, Yuning & Yang, Honghua & Yang, Xingyuan & Arras, Maximilian & Chong, Chin Hao & Ma, Linwei & Li, Zheng, 2025. "A holistic picture of the carbon emission responsibility in China's aluminium supply chain: Production-side flow analyses, consumption-side responsibility allocation, and driving factor analysis," Energy, Elsevier, vol. 327(C).
    16. Mengqing Kan & Chunyan Wang & Bing Zhu & Wei‐Qiang Chen & Yi Liu & Yucheng Ren & Ming Xu, 2023. "Seven decades of plastic flows and stocks in the United States and pathways toward zero plastic pollution by 2050," Journal of Industrial Ecology, Yale University, vol. 27(6), pages 1538-1552, December.
    17. Cha, Kyounghoon & Son, Minjung & Matsuno, Yasunari & Fthenakis, Vasilis & Hur, Tak, 2013. "Substance flow analysis of cadmium in Korea," Resources, Conservation & Recycling, Elsevier, vol. 71(C), pages 31-39.
    18. Zhang, Ling & Wang, Liang & Wang, Miaomiao & Yuan, Zengwei, 2024. "Multilevel analysis of copper resource reallocation in the anthroposphere through international trade," Resources Policy, Elsevier, vol. 88(C).
    19. Gambaro, Nicola & Brito-Parada, Pablo & Glöser-Chahoud, Simon & Plancherel, Yves, 2025. "Simulating resource movements and markets: A continuous dynamical system with delays to model anthropogenic metal cycles," Resources Policy, Elsevier, vol. 103(C).
    20. Chhimwal, Madhukar & Agrawal, Saurabh & Kumar, Girish, 2023. "Markovian approach to evaluate circularity in supply chain of non ferrous metal industry," Resources Policy, Elsevier, vol. 80(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:recore:v:88:y:2014:i:c:p:76-84. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kai Meng (email available below). General contact details of provider: https://www.journals.elsevier.com/resources-conservation-and-recycling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.