IDEAS home Printed from https://ideas.repec.org/a/eee/recore/v86y2014icp9-15.html
   My bibliography  Save this article

Sheep's wool insulation: A sustainable alternative use for a renewable resource?

Author

Listed:
  • Corscadden, K.W.
  • Biggs, J.N.
  • Stiles, D.K.

Abstract

Material selection in manufacturing may be characterized as a series of trade-offs between characteristics, properties, environmental impacts, sustainability, availability, and economics. Societal concerns about the environmental impacts of construction practices and materials have been expressed through an increase in the demand, production and use of “green” building products. This, combined with a desire to integrate more bioproducts and natural and renewable resources into the construction industry, has extended to the production and promotion of insulation made from sheep's wool.

Suggested Citation

  • Corscadden, K.W. & Biggs, J.N. & Stiles, D.K., 2014. "Sheep's wool insulation: A sustainable alternative use for a renewable resource?," Resources, Conservation & Recycling, Elsevier, vol. 86(C), pages 9-15.
  • Handle: RePEc:eee:recore:v:86:y:2014:i:c:p:9-15
    DOI: 10.1016/j.resconrec.2014.01.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0921344914000202
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.resconrec.2014.01.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. GhaffarianHoseini, AmirHosein & Dahlan, Nur Dalilah & Berardi, Umberto & GhaffarianHoseini, Ali & Makaremi, Nastaran & GhaffarianHoseini, Mahdiar, 2013. "Sustainable energy performances of green buildings: A review of current theories, implementations and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 1-17.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gary D. Gillespie & Oyinlola Dada & Kevin P. McDonnell, 2021. "The Potential for Hydrolysed Sheep Wool as a Sustainable Source of Fertiliser for Irish Agriculture," Sustainability, MDPI, vol. 14(1), pages 1-12, December.
    2. Francesca Merli & Costanza Vittoria Fiorini & Marco Barbanera & Giorgia Pietroni & Francesco Spaccini & Cinzia Buratti, 2023. "Thermal, Acoustic, and Hygrothermal Properties of Recycled Bovine Leather Cutting Waste-Based Panels with Different Compositions," Sustainability, MDPI, vol. 15(3), pages 1-11, January.
    3. Simon Pescari & Mircea Merea & Alexandru Pitroacă & Clara-Beatrice Vilceanu, 2022. "A Particular Case of Urban Sustainability: Comparison Study of the Efficiency of Multiple Thermal Insulations for Buildings," Sustainability, MDPI, vol. 14(23), pages 1-13, December.
    4. Aleksandra Stachera & Adam Stolarski & Mariusz Owczarek & Marek Telejko, 2022. "A Method of Multi-Criteria Assessment of the Building Energy Consumption," Energies, MDPI, vol. 16(1), pages 1-32, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Villa-Arrieta, Manuel & Sumper, Andreas, 2018. "A model for an economic evaluation of energy systems using TRNSYS," Applied Energy, Elsevier, vol. 215(C), pages 765-777.
    2. Rashidi, Hamidreza & GhaffarianHoseini, Ali & GhaffarianHoseini, Amirhosein & Nik Sulaiman, Nik Meriam & Tookey, John & Hashim, Nur Awanis, 2015. "Application of wastewater treatment in sustainable design of green built environments: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 845-856.
    3. Jam Shahzaib Khan & Rozana Zakaria & Siti Mazzuana Shamsudin & Nur Izie Adiana Abidin & Shaza Rina Sahamir & Darul Nafis Abbas & Eeydzah Aminudin, 2019. "Evolution to Emergence of Green Buildings: A Review," Administrative Sciences, MDPI, vol. 9(1), pages 1-20, January.
    4. Lei Jiang & Weiqing Liu & Haiping Liao & Jiabao Li, 2020. "Investigation of the Geometric Shape Effect on the Solar Energy Potential of Gymnasium Buildings," Energies, MDPI, vol. 13(23), pages 1-21, December.
    5. Vera, Sergio & Pinto, Camilo & Tabares-Velasco, Paulo Cesar & Bustamante, Waldo, 2018. "A critical review of heat and mass transfer in vegetative roof models used in building energy and urban enviroment simulation tools," Applied Energy, Elsevier, vol. 232(C), pages 752-764.
    6. Solarte-Toro, Juan Camilo & Romero-García, Juan Miguel & Martínez-Patiño, Juan Carlos & Ruiz-Ramos, Encarnación & Castro-Galiano, Eulogio & Cardona-Alzate, Carlos Ariel, 2019. "Acid pretreatment of lignocellulosic biomass for energy vectors production: A review focused on operational conditions and techno-economic assessment for bioethanol production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 587-601.
    7. Halawa, Edward & Ghaffarianhoseini, Amirhosein & Ghaffarianhoseini, Ali & Trombley, Jeremy & Hassan, Norhaslina & Baig, Mirza & Yusoff, Safiah Yusmah & Azzam Ismail, Muhammad, 2018. "A review on energy conscious designs of building façades in hot and humid climates: Lessons for (and from) Kuala Lumpur and Darwin," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2147-2161.
    8. Umberto Berardi, 2013. "Sustainability assessment of urban communities through rating systems," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 15(6), pages 1573-1591, December.
    9. Eleftheria Touloupaki & Theodoros Theodosiou, 2017. "Performance Simulation Integrated in Parametric 3D Modeling as a Method for Early Stage Design Optimization—A Review," Energies, MDPI, vol. 10(5), pages 1-18, May.
    10. Ghaffarianhoseini, Ali & Ghaffarianhoseini, Amirhosein & Berardi, Umberto & Tookey, John & Li, Danny Hin Wa & Kariminia, Shahab, 2016. "Exploring the advantages and challenges of double-skin façades (DSFs)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1052-1065.
    11. Berardi, Umberto & GhaffarianHoseini, AmirHosein & GhaffarianHoseini, Ali, 2014. "State-of-the-art analysis of the environmental benefits of green roofs," Applied Energy, Elsevier, vol. 115(C), pages 411-428.
    12. Santu Golder & Ramadas Narayanan & Md. Rashed Hossain & Mohammad Rofiqul Islam, 2021. "Experimental and CFD Investigation on the Application for Aerogel Insulation in Buildings," Energies, MDPI, vol. 14(11), pages 1-16, June.
    13. Lü, Xiaoshu & Lu, Tao & Kibert, Charles J. & Viljanen, Martti, 2014. "A novel dynamic modeling approach for predicting building energy performance," Applied Energy, Elsevier, vol. 114(C), pages 91-103.
    14. Armin Razmjoo & Meysam Majidi Nezhad & Lisa Gakenia Kaigutha & Mousa Marzband & Seyedali Mirjalili & Mehdi Pazhoohesh & Saim Memon & Mehdi A. Ehyaei & Giuseppe Piras, 2021. "Investigating Smart City Development Based on Green Buildings, Electrical Vehicles and Feasible Indicators," Sustainability, MDPI, vol. 13(14), pages 1-14, July.
    15. Berardi, Umberto, 2017. "A cross-country comparison of the building energy consumptions and their trends," Resources, Conservation & Recycling, Elsevier, vol. 123(C), pages 230-241.
    16. Bartolozzi, Irene & Rizzi, Francesco & Frey, Marco, 2017. "Are district heating systems and renewable energy sources always an environmental win-win solution? A life cycle assessment case study in Tuscany, Italy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 408-420.
    17. Stylianos K. Karatzas & Athanasios P. Chassiakos & Anastasios I. Karameros, 2020. "Business Processes and Comfort Demand for Energy Flexibility Analysis in Buildings," Energies, MDPI, vol. 13(24), pages 1-23, December.
    18. Berardi, Umberto, 2013. "Stakeholders’ influence on the adoption of energy-saving technologies in Italian homes," Energy Policy, Elsevier, vol. 60(C), pages 520-530.
    19. Wu, Peng & Song, Yongze & Shou, Wenchi & Chi, Hunglin & Chong, Heap-Yih & Sutrisna, Monty, 2017. "A comprehensive analysis of the credits obtained by LEED 2009 certified green buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 370-379.
    20. Zhou, Yuekuan, 2022. "Energy sharing and trading on a novel spatiotemporal energy network in Guangdong-Hong Kong-Macao Greater Bay Area," Applied Energy, Elsevier, vol. 318(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:recore:v:86:y:2014:i:c:p:9-15. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kai Meng (email available below). General contact details of provider: https://www.journals.elsevier.com/resources-conservation-and-recycling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.