IDEAS home Printed from https://ideas.repec.org/a/eee/recore/v122y2017icp135-142.html

Potential recycling constraints due to future supply and demand of wrought and cast Al scrap—A closed system perspective on Austria

Author

Listed:
  • Buchner, Hanno
  • Laner, David
  • Rechberger, Helmut
  • Fellner, Johann

Abstract

Closing regional material cycles by efficient use of secondary raw materials is a prioritized goal of European politics and industry. The extent to which material cycles may be closed at a regional level has, however, hardly been investigated so far, and mostly without consideration of material quality. Thus, in the present study quality aspects of aluminium (Al) recycling in Austria with respect to alloy composition are investigated in order to identify potential limitations for future Al recycling. Therefore, a dynamic material flow analysis of wrought and cast alloys is carried out for Austria covering the time span from 1964 to 2050. A closed system perspective is introduced with respect to future Al scrap supply and to which degree it can satisfy Al demand associated with final consumption. Results indicate that if current recycling practice is retained, a surplus of mixed Al scrap over final cast Al demand is expected around 2045. Assuming a more intensive use of Al in the transport sector (light-weight construction material), this surplus is likely to occur already in 2030. Model results further indicate that intensive sorting of mixed scraps from end-of-life vehicle treatment represents an effective measure to prevent a surplus of mixed Al scrap. In practice, i.e. in an open economy, the high level of Al scrap imports and exports impairs the evaluation of quality-induced Al recycling constraints, as observed in the model. Nevertheless, lower specific prices of scrap exports from Austria compared to imports may indicate a net import of higher quality scrap to satisfy quality requirements associated with the high share of wrought alloys in secondary production. Therefore, apart from enhanced scrap sorting, international scrap trade is a key element to bring together scrap supply with the scrap demand for the needs of secondary production.

Suggested Citation

  • Buchner, Hanno & Laner, David & Rechberger, Helmut & Fellner, Johann, 2017. "Potential recycling constraints due to future supply and demand of wrought and cast Al scrap—A closed system perspective on Austria," Resources, Conservation & Recycling, Elsevier, vol. 122(C), pages 135-142.
  • Handle: RePEc:eee:recore:v:122:y:2017:i:c:p:135-142
    DOI: 10.1016/j.resconrec.2017.01.014
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0921344917300253
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.resconrec.2017.01.014?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Hatayama, Hiroki & Daigo, Ichiro & Matsuno, Yasunari & Adachi, Yoshihiro, 2012. "Evolution of aluminum recycling initiated by the introduction of next-generation vehicles and scrap sorting technology," Resources, Conservation & Recycling, Elsevier, vol. 66(C), pages 8-14.
    2. Pauliuk, Stefan & Kondo, Yasushi & Nakamura, Shinichiro & Nakajima, Kenichi, 2017. "Regional distribution and losses of end-of-life steel throughout multiple product life cycles—Insights from the global multiregional MaTrace model," Resources, Conservation & Recycling, Elsevier, vol. 116(C), pages 84-93.
    3. Hajime Ohno & Kazuyo Matsubae & Kenichi Nakajima & Shinichiro Nakamura & Tetsuya Nagasaka, 2014. "Unintentional Flow of Alloying Elements in Steel during Recycling of End-of-Life Vehicles," Journal of Industrial Ecology, Yale University, vol. 18(2), pages 242-253, April.
    4. Gang Liu & Colton E. Bangs & Daniel B. Müller, 2013. "Stock dynamics and emission pathways of the global aluminium cycle," Nature Climate Change, Nature, vol. 3(4), pages 338-342, April.
    5. Chen, Wei-Qiang & Graedel, T.E., 2012. "Dynamic analysis of aluminum stocks and flows in the United States: 1900–2009," Ecological Economics, Elsevier, vol. 81(C), pages 92-102.
    6. Sevigné-Itoiz, Eva & Gasol, Carles M. & Rieradevall, Joan & Gabarrell, Xavier, 2014. "Environmental consequences of recycling aluminum old scrap in a global market," Resources, Conservation & Recycling, Elsevier, vol. 89(C), pages 94-103.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhu, Xueyuan & Jin, Qiang, 2025. "Exploring the carbon neutrality pathway for China's aluminium industry: An analysis from 1950 to 2060," Applied Energy, Elsevier, vol. 393(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shen, Angxing & Zhang, Jihong, 2024. "Technologies for CO2 emission reduction and low-carbon development in primary aluminum industry in China: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    2. Buchner, Hanno & Laner, David & Rechberger, Helmut & Fellner, Johann, 2014. "In-depth analysis of aluminum flows in Austria as a basis to increase resource efficiency," Resources, Conservation & Recycling, Elsevier, vol. 93(C), pages 112-123.
    3. Sverdrup, Harald U. & Ragnarsdottir, Kristin Vala & Koca, Deniz, 2015. "Aluminium for the future: Modelling the global production, market supply, demand, price and long term development of the global reserves," Resources, Conservation & Recycling, Elsevier, vol. 103(C), pages 139-154.
    4. Gambaro, Nicola & Brito-Parada, Pablo & Glöser-Chahoud, Simon & Plancherel, Yves, 2025. "Simulating resource movements and markets: A continuous dynamical system with delays to model anthropogenic metal cycles," Resources Policy, Elsevier, vol. 103(C).
    5. Yang, Xue & Zhang, Chao & Li, Xinyi & Cao, Zhi & Wang, Peng & Wang, Heming & Liu, Gang & Xia, Ziqian & Zhu, Dajian & Chen, Wei-Qiang, 2024. "Multinational dynamic steel cycle analysis reveals sequential decoupling between material use and economic growth," Ecological Economics, Elsevier, vol. 217(C).
    6. Bertram, M. & Ramkumar, S. & Rechberger, H. & Rombach, G. & Bayliss, C. & Martchek, K.J. & Müller, D.B. & Liu, G., 2017. "A regionally-linked, dynamic material flow modelling tool for rolled, extruded and cast aluminium products," Resources, Conservation & Recycling, Elsevier, vol. 125(C), pages 48-69.
    7. Lopes Silva, Diogo Aparecido & de Oliveira, José Augusto & Saavedra, Yovana M.B. & Ometto, Aldo Roberto & Rieradevall i Pons, Joan & Gabarrell Durany, Xavier, 2015. "Combined MFA and LCA approach to evaluate the metabolism of service polygons: A case study on a university campus," Resources, Conservation & Recycling, Elsevier, vol. 94(C), pages 157-168.
    8. Eheliyagoda, Disna & Li, Jinhui & Geng, Yong & Zeng, Xianlai, 2022. "The role of China's aluminum recycling on sustainable resource and emission pathways," Resources Policy, Elsevier, vol. 76(C).
    9. Christoph Helbig & Yasushi Kondo & Shinichiro Nakamura, 2022. "Simultaneously tracing the fate of seven metals at a global level with MaTrace‐multi," Journal of Industrial Ecology, Yale University, vol. 26(3), pages 923-936, June.
    10. Li, Shupeng & Wang, Zhe & Yue, Qiang & Zhang, Tingan, 2022. "Analysis of the quantity and spatial characterization of aluminum in-use stocks in China," Resources Policy, Elsevier, vol. 79(C).
    11. Niero, Monia & Olsen, Stig Irving, 2016. "Circular economy: To be or not to be in a closed product loop? A Life Cycle Assessment of aluminium cans with inclusion of alloying elements," Resources, Conservation & Recycling, Elsevier, vol. 114(C), pages 18-31.
    12. Zhang, Chao & Chen, Wei-Qiang & Liu, Gang & Zhu, Da-Jian, 2017. "Economic Growth and the Evolution of Material Cycles: An Analytical Framework Integrating Material Flow and Stock Indicators," Ecological Economics, Elsevier, vol. 140(C), pages 265-274.
    13. Li, Qiangfeng & Gao, Tianming & Wang, Gaoshang & Cheng, Jinhua & Dai, Tao & Wang, Huan, 2019. "Dynamic analysis of iron flows and in-use stocks in China: 1949–2015," Resources Policy, Elsevier, vol. 62(C), pages 625-634.
    14. Mohamad El Mehtedi & Pasquale Buonadonna & Mauro Carta & Rayane El Mohtadi & Alessandro Mele & Donato Morea, 2023. "Sustainability Study of a New Solid-State Aluminum Chips Recycling Process: A Life Cycle Assessment Approach," Sustainability, MDPI, vol. 15(14), pages 1-14, July.
    15. Abel Ortego & Alicia Valero & Antonio Valero & Eliette Restrepo, 2018. "Vehicles and Critical Raw Materials: A Sustainability Assessment Using Thermodynamic Rarity," Journal of Industrial Ecology, Yale University, vol. 22(5), pages 1005-1015, October.
    16. Liang, Xuedong & Yang, Xu & Yan, Fuhai & Li, Zhi, 2020. "Exploring global embodied metal flows in international trade based combination of multi-regional input-output analysis and complex network analysis," Resources Policy, Elsevier, vol. 67(C).
    17. Ji Han & Xing Meng & Yanqi Zhang & Jiabin Liu, 2017. "The Impact of Infrastructure Stock Density on CO 2 Emissions: Evidence from China Provinces," Sustainability, MDPI, vol. 9(12), pages 1-13, December.
    18. Alexandre Tisserant & Stefan Pauliuk, 2016. "Matching global cobalt demand under different scenarios for co-production and mining attractiveness," Journal of Economic Structures, Springer;Pan-Pacific Association of Input-Output Studies (PAPAIOS), vol. 5(1), pages 1-19, December.
    19. Zhu, Xueyuan & Jin, Qiang, 2025. "Exploring the carbon neutrality pathway for China's aluminium industry: An analysis from 1950 to 2060," Applied Energy, Elsevier, vol. 393(C).
    20. Alexandre Tisserant & Stefan Pauliuk, 2016. "Matching global cobalt demand under different scenarios for co-production and mining attractiveness," Journal of Economic Structures, Springer;Pan-Pacific Association of Input-Output Studies (PAPAIOS), vol. 5(1), pages 1-19, December.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:recore:v:122:y:2017:i:c:p:135-142. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kai Meng (email available below). General contact details of provider: https://www.journals.elsevier.com/resources-conservation-and-recycling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.