IDEAS home Printed from https://ideas.repec.org/a/eee/recore/v93y2014icp112-123.html
   My bibliography  Save this article

In-depth analysis of aluminum flows in Austria as a basis to increase resource efficiency

Author

Listed:
  • Buchner, Hanno
  • Laner, David
  • Rechberger, Helmut
  • Fellner, Johann

Abstract

Based on the method of material flow analysis (MFA), a static model of Austrian aluminum (Al) flows in 2010 was developed. Extensive data research on Al production, consumption, trade and waste management was conducted and resulted in a detailed model of national Al resources. Data uncertainty was considered in the model based on the application of a rigorous concept for data quality assessment. The model results indicated that the growth of the Austrian “in-use” Al stock amounts to 11±3.1kgyr−1cap−1. The total “in-use” Al stock was determined using a bottom-up approach, which produced an estimate of 260kgAlcap−1. Approximately 7±1kg of Alyr−1cap−1 of old scrap was generated in 2010, of which 20% was not recovered because of losses in waste management processes. Quantitatively, approximately 40% of the total scrap input to secondary Al production originated from net imports, highlighting the import dependency of Austrian Al refiners and remelters. Uncertainties in the calculation of recycling indicators for the Austrian Al system with high shares of foreign scrap trade were exemplarily illustrated for the old scrap ratio (OSR) in secondary Al production, resulting in a possible range of OSRs between 0 and 66%. Overall, the detailed MFA in this study provides a basis to identify resource potentials as well as resource losses in the national Al system, and it will serve as a starting point for a dynamic Al model to be developed in the future.

Suggested Citation

  • Buchner, Hanno & Laner, David & Rechberger, Helmut & Fellner, Johann, 2014. "In-depth analysis of aluminum flows in Austria as a basis to increase resource efficiency," Resources, Conservation & Recycling, Elsevier, vol. 93(C), pages 112-123.
  • Handle: RePEc:eee:recore:v:93:y:2014:i:c:p:112-123
    DOI: 10.1016/j.resconrec.2014.09.016
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0921344914002201
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.resconrec.2014.09.016?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ott, Christian & Rechberger, Helmut, 2012. "The European phosphorus balance," Resources, Conservation & Recycling, Elsevier, vol. 60(C), pages 159-172.
    2. Chen, Wei-Qiang & Shi, Lei, 2012. "Analysis of aluminum stocks and flows in mainland China from 1950 to 2009: Exploring the dynamics driving the rapid increase in China's aluminum production," Resources, Conservation & Recycling, Elsevier, vol. 65(C), pages 18-28.
    3. Marlen Bertram & Kenneth J. Martchek & Georg Rombach, 2009. "Material Flow Analysis in the Aluminum Industry," Journal of Industrial Ecology, Yale University, vol. 13(5), pages 650-654, October.
    4. Ciacci, Luca & Chen, Weiqiang & Passarini, Fabrizio & Eckelman, Matthew & Vassura, Ivano & Morselli, Luciano, 2013. "Historical evolution of anthropogenic aluminum stocks and flows in Italy," Resources, Conservation & Recycling, Elsevier, vol. 72(C), pages 1-8.
    5. Recalde, Korinti & Wang, Jinlong & Graedel, T.E., 2008. "Aluminium in-use stocks in the state of Connecticut," Resources, Conservation & Recycling, Elsevier, vol. 52(11), pages 1271-1282.
    6. Lynette Cheah & John Heywood & Randolph Kirchain, 2009. "Aluminum Stock and Flows in U.S. Passenger Vehicles and Implications for Energy Use," Journal of Industrial Ecology, Yale University, vol. 13(5), pages 718-734, October.
    7. Truttmann, Nina & Rechberger, Helmut, 2006. "Contribution to resource conservation by reuse of electrical and electronic household appliances," Resources, Conservation & Recycling, Elsevier, vol. 48(3), pages 249-262.
    8. Chen, Wei-Qiang & Graedel, T.E., 2012. "Dynamic analysis of aluminum stocks and flows in the United States: 1900–2009," Ecological Economics, Elsevier, vol. 81(C), pages 92-102.
    9. Milford, Rachel L. & Allwood, Julian M. & Cullen, Jonathan M., 2011. "Assessing the potential of yield improvements, through process scrap reduction, for energy and CO2 abatement in the steel and aluminium sectors," Resources, Conservation & Recycling, Elsevier, vol. 55(12), pages 1185-1195.
    10. Preston Li & Jeffrey Dahmus & Sigrid Guldberg & Hans Ole Riddervold & Randolph Kirchain, 2011. "How Much Sorting Is Enough," Journal of Industrial Ecology, Yale University, vol. 15(5), pages 743-759, October.
    11. Wei‐Qiang Chen, 2013. "Recycling Rates of Aluminum in the United States," Journal of Industrial Ecology, Yale University, vol. 17(6), pages 926-938, December.
    12. David Laner & Helmut Rechberger & Thomas Astrup, 2014. "Systematic Evaluation of Uncertainty in Material Flow Analysis," Journal of Industrial Ecology, Yale University, vol. 18(6), pages 859-870, December.
    13. Mathieux, Fabrice & Brissaud, Daniel, 2010. "End-of-life product-specific material flow analysis. Application to aluminum coming from end-of-life commercial vehicles in Europe," Resources, Conservation & Recycling, Elsevier, vol. 55(2), pages 92-105.
    14. Gang Liu & Colton E. Bangs & Daniel B. Müller, 2013. "Stock dynamics and emission pathways of the global aluminium cycle," Nature Climate Change, Nature, vol. 3(4), pages 338-342, April.
    15. Hatayama, Hiroki & Daigo, Ichiro & Matsuno, Yasunari & Adachi, Yoshihiro, 2012. "Evolution of aluminum recycling initiated by the introduction of next-generation vehicles and scrap sorting technology," Resources, Conservation & Recycling, Elsevier, vol. 66(C), pages 8-14.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Van Eygen, Emile & Feketitsch, Julia & Laner, David & Rechberger, Helmut & Fellner, Johann, 2017. "Comprehensive analysis and quantification of national plastic flows: The case of Austria," Resources, Conservation & Recycling, Elsevier, vol. 117(PB), pages 183-194.
    2. Li, Shupeng & Wang, Zhe & Yue, Qiang & Zhang, Tingan, 2022. "Analysis of the quantity and spatial characterization of aluminum in-use stocks in China," Resources Policy, Elsevier, vol. 79(C).
    3. Choi, Chul Hun & Cao, Jinjian & Zhao, Fu, 2016. "System Dynamics Modeling of Indium Material Flows under Wide Deployment of Clean Energy Technologies," Resources, Conservation & Recycling, Elsevier, vol. 114(C), pages 59-71.
    4. Bertram, M. & Ramkumar, S. & Rechberger, H. & Rombach, G. & Bayliss, C. & Martchek, K.J. & Müller, D.B. & Liu, G., 2017. "A regionally-linked, dynamic material flow modelling tool for rolled, extruded and cast aluminium products," Resources, Conservation & Recycling, Elsevier, vol. 125(C), pages 48-69.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Maung, Kyaw Nyunt & Yoshida, Tomoharu & Liu, Gang & Lwin, Cherry Myo & Muller, Daniel B. & Hashimoto, Seiji, 2017. "Assessment of secondary aluminum reserves of nations," Resources, Conservation & Recycling, Elsevier, vol. 126(C), pages 34-41.
    2. Li, Shupeng & Wang, Zhe & Yue, Qiang & Zhang, Tingan, 2022. "Analysis of the quantity and spatial characterization of aluminum in-use stocks in China," Resources Policy, Elsevier, vol. 79(C).
    3. Sverdrup, Harald U. & Ragnarsdottir, Kristin Vala & Koca, Deniz, 2015. "Aluminium for the future: Modelling the global production, market supply, demand, price and long term development of the global reserves," Resources, Conservation & Recycling, Elsevier, vol. 103(C), pages 139-154.
    4. Cao, Zhi & Shen, Lei & Liu, Litao & Zhao, Jianan & Zhong, Shuai & Kong, Hanxiao & Sun, Yanzhi, 2017. "Estimating the in-use cement stock in China: 1920–2013," Resources, Conservation & Recycling, Elsevier, vol. 122(C), pages 21-31.
    5. Bertram, M. & Ramkumar, S. & Rechberger, H. & Rombach, G. & Bayliss, C. & Martchek, K.J. & Müller, D.B. & Liu, G., 2017. "A regionally-linked, dynamic material flow modelling tool for rolled, extruded and cast aluminium products," Resources, Conservation & Recycling, Elsevier, vol. 125(C), pages 48-69.
    6. Chen, Wu & Wang, Minxi & Li, Xin, 2016. "Analysis of copper flows in the United States: 1975–2012," Resources, Conservation & Recycling, Elsevier, vol. 111(C), pages 67-76.
    7. Huang, Chu-Long & Vause, Jonathan & Ma, Hwong-Wen & Yu, Chang-Ping, 2012. "Using material/substance flow analysis to support sustainable development assessment: A literature review and outlook," Resources, Conservation & Recycling, Elsevier, vol. 68(C), pages 104-116.
    8. Buchner, Hanno & Laner, David & Rechberger, Helmut & Fellner, Johann, 2017. "Potential recycling constraints due to future supply and demand of wrought and cast Al scrap—A closed system perspective on Austria," Resources, Conservation & Recycling, Elsevier, vol. 122(C), pages 135-142.
    9. Sevigné-Itoiz, Eva & Gasol, Carles M. & Rieradevall, Joan & Gabarrell, Xavier, 2014. "Environmental consequences of recycling aluminum old scrap in a global market," Resources, Conservation & Recycling, Elsevier, vol. 89(C), pages 94-103.
    10. Dai, Tiejun & Yue, Zhongchun, 2023. "The evolution and decoupling of in-use stocks in Beijing," Ecological Economics, Elsevier, vol. 203(C).
    11. Ciacci, L. & Passarini, F. & Vassura, I., 2017. "The European PVC cycle: In-use stock and flows," Resources, Conservation & Recycling, Elsevier, vol. 123(C), pages 108-116.
    12. Zhang, Chao & Chen, Wei-Qiang & Liu, Gang & Zhu, Da-Jian, 2017. "Economic Growth and the Evolution of Material Cycles: An Analytical Framework Integrating Material Flow and Stock Indicators," Ecological Economics, Elsevier, vol. 140(C), pages 265-274.
    13. Nate P. Hua & Jarod C. Kelly & Geoffrey M. Lewis & Gregory A. Keoleian, 2022. "Regional analysis of aluminum and steel flows into the American automotive industry," Journal of Industrial Ecology, Yale University, vol. 26(4), pages 1318-1332, August.
    14. Jan Streeck & Quirin Dammerer & Dominik Wiedenhofer & Fridolin Krausmann, 2021. "The role of socio‐economic material stocks for natural resource use in the United States of America from 1870 to 2100," Journal of Industrial Ecology, Yale University, vol. 25(6), pages 1486-1502, December.
    15. Lu, Bin & Liu, Jingru & Yang, Jianxin, 2017. "Substance flow analysis of lithium for sustainable management in mainland China: 2007–2014," Resources, Conservation & Recycling, Elsevier, vol. 119(C), pages 109-116.
    16. Chen, Qianqian & Gu, Yu & Tang, Zhiyong & Wei, Wei & Sun, Yuhan, 2018. "Assessment of low-carbon iron and steel production with CO2 recycling and utilization technologies: A case study in China," Applied Energy, Elsevier, vol. 220(C), pages 192-207.
    17. Ciacci, Luca & Chen, Weiqiang & Passarini, Fabrizio & Eckelman, Matthew & Vassura, Ivano & Morselli, Luciano, 2013. "Historical evolution of anthropogenic aluminum stocks and flows in Italy," Resources, Conservation & Recycling, Elsevier, vol. 72(C), pages 1-8.
    18. Gabriela Jarrín Jácome & María Fernanda Godoy León & Rodrigo A. F. Alvarenga & Jo Dewulf, 2021. "Tracking the Fate of Aluminium in the EU Using the MaTrace Model," Resources, MDPI, vol. 10(7), pages 1-15, July.
    19. Eheliyagoda, Disna & Li, Jinhui & Geng, Yong & Zeng, Xianlai, 2022. "The role of China's aluminum recycling on sustainable resource and emission pathways," Resources Policy, Elsevier, vol. 76(C).
    20. Simic, Vladimir & Dimitrijevic, Branka, 2013. "Risk explicit interval linear programming model for long-term planning of vehicle recycling in the EU legislative context under uncertainty," Resources, Conservation & Recycling, Elsevier, vol. 73(C), pages 197-210.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:recore:v:93:y:2014:i:c:p:112-123. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kai Meng (email available below). General contact details of provider: https://www.journals.elsevier.com/resources-conservation-and-recycling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.