IDEAS home Printed from https://ideas.repec.org/a/eee/proeco/v280y2025ics092552732400344x.html
   My bibliography  Save this article

A personalized content-based method to predict customers’ preferences in an online apparel retailer

Author

Listed:
  • KabirMamdouh, Alireza
  • Kök, A. Gürhan

Abstract

A critical decision for an online retailer is to select a set of products out of thousands of possible choices to present to the customers on a web page. The retailer may prefer to offer a different set for each customer because customers have heterogeneous preferences. Thus, to offer the optimal set, the retailer needs to know the customer’s preferences. We propose a new personalized content-based method to comprehend customers’ preferences in an online retailer based on customers’ previous clicks and purchases and attributes of the products. We represent each product with an attribute vector that consists of all attributes of a product, e.g. color and brand. Then, for each customer, a score is assigned to each attribute vector based on the customer’s previous preferences, representing his/her interest in that combination of attributes. We test the method using data provided by an apparel retailer. Our method outperforms benchmark methods (including Collaborative Filtering) in predicting customers’ preferences (i.e. clicks and purchases) in general, and it has a strictly better performance in predicting customers’ preferences over new products. Also, our method outperforms benchmark methods with a high margin in predicting the preferences of customers who are not generally interested in popular products. Finally, we implement a hybrid method consisting of all implemented methods named the Smart Selection. This method outperforms all methods in predicting clicks and purchases with a high margin. This shows that our method provides a complementary approach for Collaborative Filtering by successfully addressing the limitations of commonly used methods.

Suggested Citation

  • KabirMamdouh, Alireza & Kök, A. Gürhan, 2025. "A personalized content-based method to predict customers’ preferences in an online apparel retailer," International Journal of Production Economics, Elsevier, vol. 280(C).
  • Handle: RePEc:eee:proeco:v:280:y:2025:i:c:s092552732400344x
    DOI: 10.1016/j.ijpe.2024.109487
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S092552732400344X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ijpe.2024.109487?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Raluca M. Ursu, 2018. "The Power of Rankings: Quantifying the Effect of Rankings on Online Consumer Search and Purchase Decisions," Marketing Science, INFORMS, vol. 37(4), pages 530-552, August.
    2. Jacob Feldman & Dennis J. Zhang & Xiaofei Liu & Nannan Zhang, 2022. "Customer Choice Models vs. Machine Learning: Finding Optimal Product Displays on Alibaba," Operations Research, INFORMS, vol. 70(1), pages 309-328, January.
    3. Fernando Bernstein & A. Gürhan Kök & Lei Xie, 2015. "Dynamic Assortment Customization with Limited Inventories," Manufacturing & Service Operations Management, INFORMS, vol. 17(4), pages 538-553, October.
    4. Anindya Ghose & Panagiotis G. Ipeirotis & Beibei Li, 2014. "Examining the Impact of Ranking on Consumer Behavior and Search Engine Revenue," Management Science, INFORMS, vol. 60(7), pages 1632-1654, July.
    5. Ali Aouad & Danny Segev, 2021. "Display Optimization for Vertically Differentiated Locations Under Multinomial Logit Preferences," Management Science, INFORMS, vol. 67(6), pages 3519-3550, June.
    6. Negin Golrezaei & Hamid Nazerzadeh & Paat Rusmevichientong, 2014. "Real-Time Optimization of Personalized Assortments," Management Science, INFORMS, vol. 60(6), pages 1532-1551, June.
    7. Anindya Ghose & Panagiotis G. Ipeirotis & Beibei Li, 2012. "Designing Ranking Systems for Hotels on Travel Search Engines by Mining User-Generated and Crowdsourced Content," Marketing Science, INFORMS, vol. 31(3), pages 493-520, May.
    8. A. Gürhan Kök & Marshall L. Fisher & Ramnath Vaidyanathan, 2015. "Assortment Planning: Review of Literature and Industry Practice," International Series in Operations Research & Management Science, in: Narendra Agrawal & Stephen A. Smith (ed.), Retail Supply Chain Management, edition 2, chapter 0, pages 175-236, Springer.
    9. Guillermo Gallego & Anran Li & Van-Anh Truong & Xinshang Wang, 2020. "Approximation Algorithms for Product Framing and Pricing," Operations Research, INFORMS, vol. 68(1), pages 134-160, January.
    10. Gallego, Guillermo & Li, Anran & Truong, Van-Anh & Wang, Xinshang, 2020. "Approximation algorithms for product framing and pricing," LSE Research Online Documents on Economics 101983, London School of Economics and Political Science, LSE Library.
    11. Animesh Animesh & Siva Viswanathan & Ritu Agarwal, 2011. "Competing “Creatively” in Sponsored Search Markets: The Effect of Rank, Differentiation Strategy, and Competition on Performance," Information Systems Research, INFORMS, vol. 22(1), pages 153-169, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kris J. Ferreira & Sunanda Parthasarathy & Shreyas Sekar, 2022. "Learning to Rank an Assortment of Products," Management Science, INFORMS, vol. 68(3), pages 1828-1848, March.
    2. Guillermo Gallego & Gerardo Berbeglia, 2021. "The Limits of Personalization in Assortment Optimization," Papers 2109.14861, arXiv.org, revised Jun 2024.
    3. Ali Aouad & Daniela Saban, 2023. "Online Assortment Optimization for Two-Sided Matching Platforms," Management Science, INFORMS, vol. 69(4), pages 2069-2087, April.
    4. Ali Aouad & Danny Segev, 2021. "Display Optimization for Vertically Differentiated Locations Under Multinomial Logit Preferences," Management Science, INFORMS, vol. 67(6), pages 3519-3550, June.
    5. Berbeglia, Franco & Berbeglia, Gerardo & Van Hentenryck, Pascal, 2021. "Market segmentation in online platforms," European Journal of Operational Research, Elsevier, vol. 295(3), pages 1025-1041.
    6. Raluca M. Ursu & Qingliang Wang & Pradeep K. Chintagunta, 2020. "Search Duration," Marketing Science, INFORMS, vol. 39(5), pages 849-871, September.
    7. Giovanni Compiani & Gregory Lewis & Sida Peng & Peichun Wang, 2024. "Online Search and Optimal Product Rankings: An Empirical Framework," Marketing Science, INFORMS, vol. 43(3), pages 615-636, May.
    8. Ali Aouad & Jacob Feldman & Danny Segev, 2023. "The Exponomial Choice Model for Assortment Optimization: An Alternative to the MNL Model?," Management Science, INFORMS, vol. 69(5), pages 2814-2832, May.
    9. Chris Gu & Yike Wang, 2022. "Consumer Online Search with Partially Revealed Information," Management Science, INFORMS, vol. 68(6), pages 4215-4235, June.
    10. Gu, Chris & Wang, Yike, 2022. "Consumer online search with partially revealed information," LSE Research Online Documents on Economics 109871, London School of Economics and Political Science, LSE Library.
    11. Raluca M. Ursu & Daria Dzyabura, 2020. "Retailers’ product location problem with consumer search," Quantitative Marketing and Economics (QME), Springer, vol. 18(2), pages 125-154, June.
    12. Santiago R. Balseiro & Antoine Désir, 2023. "Incentive-Compatible Assortment Optimization for Sponsored Products," Management Science, INFORMS, vol. 69(8), pages 4668-4684, August.
    13. Morgane Cure & Matthias Hunold & Reinhold Kesler & Ulrich Laitenberger & Thomas Larrieu, 2022. "Vertical integration of platforms and product prominence," Quantitative Marketing and Economics (QME), Springer, vol. 20(4), pages 353-395, December.
    14. Shengjun Mao & Sanjeev Dewan & Yi-Jen (Ian) Ho, 2023. "Personalized Ranking at a Mobile App Distribution Platform," Information Systems Research, INFORMS, vol. 34(3), pages 811-827, September.
    15. Fernando Bernstein & Sajad Modaresi & Denis Sauré, 2019. "A Dynamic Clustering Approach to Data-Driven Assortment Personalization," Management Science, INFORMS, vol. 67(5), pages 2095-2115, May.
    16. Mahsa Derakhshan & Negin Golrezaei & Vahideh Manshadi & Vahab Mirrokni, 2022. "Product Ranking on Online Platforms," Management Science, INFORMS, vol. 68(6), pages 4024-4041, June.
    17. Hense, Jonas & Hübner, Alexander, 2022. "Assortment optimization in omni-channel retailing," European Journal of Operational Research, Elsevier, vol. 301(1), pages 124-140.
    18. Xiao-Yue Gong & Vineet Goyal & Garud N. Iyengar & David Simchi-Levi & Rajan Udwani & Shuangyu Wang, 2022. "Online Assortment Optimization with Reusable Resources," Management Science, INFORMS, vol. 68(7), pages 4772-4785, July.
    19. Rafael P. Greminger, 2022. "Trade-Offs Between Ranking Objectives: Reduced-Form Evidence and Structural Estimation," Papers 2210.16408, arXiv.org, revised Feb 2025.
    20. Çömez-Dolgan, Nagihan & Fescioglu-Unver, Nilgun & Cephe, Ecem & Şen, Alper, 2021. "Capacitated strategic assortment planning under explicit demand substitution," European Journal of Operational Research, Elsevier, vol. 294(3), pages 1120-1138.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:proeco:v:280:y:2025:i:c:s092552732400344x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ijpe .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.