IDEAS home Printed from https://ideas.repec.org/a/eee/proeco/v256y2023ics092552732200305x.html
   My bibliography  Save this article

Process flexibility in the presence of product modularity: Does modularity help?

Author

Listed:
  • Verma, Nishant Kumar
  • Chatterjee, Ashish K.

Abstract

One of the primary goals of supply chain management is to reduce supply–demand mismatch (SDM). Product variety explosion is a common occurrence across industries and is one of the primary sources of demand uncertainty, resulting in SDM and the associated costs. Researchers and practitioners have investigated the role of process flexibility in addressing SDM caused by product variety. This study investigates the impact of product modularity on the benefits of process flexibility. It answers the critical question: “Does introducing modularity in product structure lead to reduced process flexibility requirements?”. As flexibility investment is costly, the reduced requirement in the presence of product modularity positively impacts financially constrained manufacturing firms (e.g., those belonging to the SME sector or start-up ecosystem). Two stochastic optimization problems are formulated, one with two products and one with multiple products. The results show that in the presence of product modularity, the optimal production policy handles demand uncertainty better and thus reduces SDM cost more than the integrated product case. Further, the need for investment in process flexibility decreases in the presence of modularity. In the multi-product formulation, the researchers investigate the d-chain process flexibility structure requirement. In the presence of product modularity, a 2-chain process flexibility structure is sufficient to almost achieve the performance of a full flexibility structure, in contrast to integrated product scenarios where at least 3 to 4-chains are required.

Suggested Citation

  • Verma, Nishant Kumar & Chatterjee, Ashish K., 2023. "Process flexibility in the presence of product modularity: Does modularity help?," International Journal of Production Economics, Elsevier, vol. 256(C).
  • Handle: RePEc:eee:proeco:v:256:y:2023:i:c:s092552732200305x
    DOI: 10.1016/j.ijpe.2022.108723
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S092552732200305X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ijpe.2022.108723?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Abraham,Facundo & Schmukler,Sergio L. & Abraham,Facundo & Schmukler,Sergio L., 2017. "Addressing the SME finance problem," Research and Policy Briefs 120333, The World Bank.
    2. Ramasesh, Ranga & Tirupati, Devanath & Vaitsos, Constantin A., 2010. "Modeling process-switching decisions under product life cycle uncertainty," International Journal of Production Economics, Elsevier, vol. 126(2), pages 236-246, August.
    3. Erfan Mehmanchi & Hoda Bidkhori & Oleg A. Prokopyev, 2020. "Analysis of process flexibility designs under disruptions," IISE Transactions, Taylor & Francis Journals, vol. 53(2), pages 131-148, July.
    4. Fiorotto, Diego Jacinto & Jans, Raf & Alexandre de Araujo, Silvio, 2018. "Process flexibility and the chaining principle in lot sizing problems," International Journal of Production Economics, Elsevier, vol. 204(C), pages 244-263.
    5. Ebru K. Bish & Qiong Wang, 2004. "Optimal Investment Strategies for Flexible Resources, Considering Pricing and Correlated Demands," Operations Research, INFORMS, vol. 52(6), pages 954-964, December.
    6. David Simchi‐Levi & He Wang & Yehua Wei, 2018. "Increasing Supply Chain Robustness through Process Flexibility and Inventory," Production and Operations Management, Production and Operations Management Society, vol. 27(8), pages 1476-1491, August.
    7. Taylor Randall & Karl Ulrich, 2001. "Product Variety, Supply Chain Structure, and Firm Performance: Analysis of the U.S. Bicycle Industry," Management Science, INFORMS, vol. 47(12), pages 1588-1604, December.
    8. Fixson, Sebastian K., 2007. "Modularity and Commonality Research: Past Developments and Future Opportunities," Working papers 37145, Massachusetts Institute of Technology (MIT), Sloan School of Management.
    9. Oben Ceryan & Ozge Sahin & Izak Duenyas, 2013. "Dynamic Pricing of Substitutable Products in the Presence of Capacity Flexibility," Manufacturing & Service Operations Management, INFORMS, vol. 15(1), pages 86-101, April.
    10. Fixson, Sebastian K., 2007. "Modularity and Commonality Research: Past Developments and Future Opportunities," Working papers 37286, Massachusetts Institute of Technology (MIT), Sloan School of Management.
    11. Jiri Chod & Nils Rudi, 2005. "Resource Flexibility with Responsive Pricing," Operations Research, INFORMS, vol. 53(3), pages 532-548, June.
    12. Xuan Wang & Jiawei Zhang, 2015. "Process Flexibility: A Distribution-Free Bound on the Performance of k -Chain," Operations Research, INFORMS, vol. 63(3), pages 555-571, June.
    13. Tang, Christopher & Tomlin, Brian, 2008. "The power of flexibility for mitigating supply chain risks," International Journal of Production Economics, Elsevier, vol. 116(1), pages 12-27, November.
    14. William C. Jordan & Stephen C. Graves, 1995. "Principles on the Benefits of Manufacturing Process Flexibility," Management Science, INFORMS, vol. 41(4), pages 577-594, April.
    15. Hongmin Li & Woonghee T. Huh & Matheus C. Sampaio & Naiping Keng, 2021. "Planning Production and Equipment Qualification under High Process Flexibility," Production and Operations Management, Production and Operations Management Society, vol. 30(10), pages 3369-3390, October.
    16. Gupta, Diwakar & Gerchak, Yigal & Buzacott, John A., 1992. "The optimal mix of flexible and dedicated manufacturing capacities: Hedging against demand uncertainty," International Journal of Production Economics, Elsevier, vol. 28(3), pages 309-319, December.
    17. Zhen Xu & Hailun Zhang & Jiheng Zhang & Rachel Q. Zhang, 2020. "Online Demand Fulfillment Under Limited Flexibility," Management Science, INFORMS, vol. 66(10), pages 4667-4685, October.
    18. Kamalini Ramdas & Mohanbir S. Sawhney, 2001. "A Cross-Functional Approach to Evaluating Multiple Line Extensions for Assembled Products," Management Science, INFORMS, vol. 47(1), pages 22-36, January.
    19. Mabel C. Chou & Geoffrey A. Chua & Huan Zheng, 2014. "On the Performance of Sparse Process Structures in Partial Postponement Production Systems," Operations Research, INFORMS, vol. 62(2), pages 348-365, April.
    20. David Simchi-Levi & Yehua Wei, 2012. "Understanding the Performance of the Long Chain and Sparse Designs in Process Flexibility," Operations Research, INFORMS, vol. 60(5), pages 1125-1141, October.
    21. Mabel C. Chou & Geoffrey A. Chua & Chung-Piaw Teo & Huan Zheng, 2010. "Design for Process Flexibility: Efficiency of the Long Chain and Sparse Structure," Operations Research, INFORMS, vol. 58(1), pages 43-58, February.
    22. Ebru K. Bish & Ana Muriel & Stephan Biller, 2005. "Managing Flexible Capacity in a Make-to-Order Environment," Management Science, INFORMS, vol. 51(2), pages 167-180, February.
    23. Jan A. Van Mieghem, 1998. "Investment Strategies for Flexible Resources," Management Science, INFORMS, vol. 44(8), pages 1071-1078, August.
    24. Stephen C. Graves & Brian T. Tomlin, 2003. "Process Flexibility in Supply Chains," Management Science, INFORMS, vol. 49(7), pages 907-919, July.
    25. Ulrich, Karl, 1995. "The role of product architecture in the manufacturing firm," Research Policy, Elsevier, vol. 24(3), pages 419-440, May.
    26. Chou, Mabel C. & Chua, Geoffrey A. & Teo, Chung-Piaw, 2010. "On range and response: Dimensions of process flexibility," European Journal of Operational Research, Elsevier, vol. 207(2), pages 711-724, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dipankar Bose & A. K. Chatterjee & Samir Barman, 2016. "Towards dominant flexibility configurations in strategic capacity planning under demand uncertainty," OPSEARCH, Springer;Operational Research Society of India, vol. 53(3), pages 604-619, September.
    2. Timothy C. Y. Chan & Douglas Fearing, 2019. "Process Flexibility in Baseball: The Value of Positional Flexibility," Management Science, INFORMS, vol. 65(4), pages 1642-1666, April.
    3. Rujeerapaiboon, Napat & Zhong, Yuanguang & Zhu, Dan, 2023. "Resilience of long chain under disruption," European Journal of Operational Research, Elsevier, vol. 309(2), pages 597-615.
    4. Shixin Wang & Xuan Wang & Jiawei Zhang, 2021. "A Review of Flexible Processes and Operations," Production and Operations Management, Production and Operations Management Society, vol. 30(6), pages 1804-1824, June.
    5. Bo Liao & Candace Arai Yano & Shiva Esturi, 2017. "Optimizing Site Qualification Across the Supply Network at Western Digital," Interfaces, INFORMS, vol. 47(4), pages 305-319, August.
    6. Brian Tomlin & Yimin Wang, 2008. "Pricing and Operational Recourse in Coproduction Systems," Management Science, INFORMS, vol. 54(3), pages 522-537, March.
    7. Arash Asadpour & Xuan Wang & Jiawei Zhang, 2020. "Online Resource Allocation with Limited Flexibility," Management Science, INFORMS, vol. 66(2), pages 642-666, February.
    8. Timothy C. Y. Chan & Daniel Letourneau & Benjamin G. Potter, 2022. "Sparse flexible design: a machine learning approach," Flexible Services and Manufacturing Journal, Springer, vol. 34(4), pages 1066-1116, December.
    9. Perraudat, Antoine & Dauzère-Pérès, Stéphane & Vialletelle, Philippe, 2022. "Robust tactical qualification decisions in flexible manufacturing systems," Omega, Elsevier, vol. 106(C).
    10. Jingui Xie & Yiming Fan & Mabel C. Chou, 2017. "Flexibility design in loss and queueing systems: efficiency of k-chain configuration," Flexible Services and Manufacturing Journal, Springer, vol. 29(2), pages 286-308, June.
    11. Zhen Xu & Hailun Zhang & Jiheng Zhang & Rachel Q. Zhang, 2020. "Online Demand Fulfillment Under Limited Flexibility," Management Science, INFORMS, vol. 66(10), pages 4667-4685, October.
    12. Achal Bassamboo & Ramandeep S. Randhawa & Jan A. Van Mieghem, 2010. "Optimal Flexibility Configurations in Newsvendor Networks: Going Beyond Chaining and Pairing," Management Science, INFORMS, vol. 56(8), pages 1285-1303, August.
    13. Xuan Wang & Jiawei Zhang, 2015. "Process Flexibility: A Distribution-Free Bound on the Performance of k -Chain," Operations Research, INFORMS, vol. 63(3), pages 555-571, June.
    14. Manu Goyal & Serguei Netessine, 2007. "Strategic Technology Choice and Capacity Investment Under Demand Uncertainty," Management Science, INFORMS, vol. 53(2), pages 192-207, February.
    15. Chua, Geoffrey A. & Chen, Shaoxiang & Han, Zhiguang, 2016. "Hub and Chain: Process Flexibility Design in Non-Identical Systems Using Variance Information," European Journal of Operational Research, Elsevier, vol. 253(3), pages 625-638.
    16. Guodong Lyu & Wang-Chi Cheung & Mabel C. Chou & Chung-Piaw Teo & Zhichao Zheng & Yuanguang Zhong, 2019. "Capacity Allocation in Flexible Production Networks: Theory and Applications," Management Science, INFORMS, vol. 65(11), pages 5091-5109, November.
    17. Manu Goyal & Serguei Netessine, 2011. "Volume Flexibility, Product Flexibility, or Both: The Role of Demand Correlation and Product Substitution," Manufacturing & Service Operations Management, INFORMS, vol. 13(2), pages 180-193, March.
    18. Mabel C. Chou & Geoffrey A. Chua & Chung-Piaw Teo & Huan Zheng, 2010. "Design for Process Flexibility: Efficiency of the Long Chain and Sparse Structure," Operations Research, INFORMS, vol. 58(1), pages 43-58, February.
    19. Lingxiu Dong & Duo Shi & Fuqiang Zhang, 2022. "3D Printing and Product Assortment Strategy," Management Science, INFORMS, vol. 68(8), pages 5724-5744, August.
    20. Ebru K. Bish & Ana Muriel & Stephan Biller, 2005. "Managing Flexible Capacity in a Make-to-Order Environment," Management Science, INFORMS, vol. 51(2), pages 167-180, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:proeco:v:256:y:2023:i:c:s092552732200305x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ijpe .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.