GHENet: Attention-based Hurst exponents for the forecasting of stock market indexes
Author
Abstract
Suggested Citation
DOI: 10.1016/j.physa.2025.130540
Download full text from publisher
As the access to this document is restricted, you may want to
for a different version of it.References listed on IDEAS
- Elie Bouri & Riza Demirer & Rangan Gupta & Xiaojin Sun, 2020.
"The predictability of stock market volatility in emerging economies: Relative roles of local, regional, and global business cycles,"
Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(6), pages 957-965, September.
- Elie Bouri & Riza Demirer & Rangan Gupta & Xiaojin Sun, 2019. "The Predictability of Stock Market Volatility in Emerging Economies: Relative Roles of Local, Regional and Global Business Cycles," Working Papers 201938, University of Pretoria, Department of Economics.
- Buonocore, R.J. & Aste, T. & Di Matteo, T., 2016. "Measuring multiscaling in financial time-series," Chaos, Solitons & Fractals, Elsevier, vol. 88(C), pages 38-47.
- Bassler, Kevin E. & Gunaratne, Gemunu H. & McCauley, Joseph L., 2006. "Markov processes, Hurst exponents, and nonlinear diffusion equations: With application to finance," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 369(2), pages 343-353.
- Ahmed, Shamima & Alshater, Muneer M. & Ammari, Anis El & Hammami, Helmi, 2022.
"Artificial intelligence and machine learning in finance: A bibliometric review,"
Research in International Business and Finance, Elsevier, vol. 61(C).
- Shamima Ahmed & Muneer Alshater & Anis El Ammari & Helmi Hammami, 2022. "Artificial intelligence and machine learning in finance: A bibliometric review," Post-Print hal-03697290, HAL.
- Antoniades, I.P. & Karakatsanis, L.P. & Pavlos, E.G., 2021. "Dynamical characteristics of global stock markets based on time dependent Tsallis non-extensive statistics and generalized Hurst exponents," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 578(C).
- Graham Elliott & Allan Timmermann, 2016.
"Forecasting in Economics and Finance,"
Annual Review of Economics, Annual Reviews, vol. 8(1), pages 81-110, October.
- Timmermann, Allan & Elliott, Graham, 2016. "Forecasting in Economics and Finance," CEPR Discussion Papers 11354, C.E.P.R. Discussion Papers.
- Elliott, Graham & Timmermann, Allan G, 2016. "Forecasting in Economics and Finance," University of California at San Diego, Economics Working Paper Series qt6z55v472, Department of Economics, UC San Diego.
- Harri Pönkä, 2017.
"Predicting the direction of US stock markets using industry returns,"
Empirical Economics, Springer, vol. 52(4), pages 1451-1480, June.
- Pönkä, Harri, 2014. "Predicting the direction of US stock markets using industry returns," MPRA Paper 62942, University Library of Munich, Germany.
- Allan Timmermann, 2018. "Forecasting Methods in Finance," Annual Review of Financial Economics, Annual Reviews, vol. 10(1), pages 449-479, November.
- Bouri, Elie & Gradojevic, Nikola & Nekhili, Ramzi, 2024. "Fear, extreme fear and U.S. stock market returns," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 656(C).
- Lim, Bryan & Arık, Sercan Ö. & Loeff, Nicolas & Pfister, Tomas, 2021. "Temporal Fusion Transformers for interpretable multi-horizon time series forecasting," International Journal of Forecasting, Elsevier, vol. 37(4), pages 1748-1764.
- Prasanth, Sikakollu & Singh, Uttam & Kumar, Arun & Tikkiwal, Vinay Anand & Chong, Peter H.J., 2021. "Forecasting spread of COVID-19 using google trends: A hybrid GWO-deep learning approach," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
- Diebold, Francis X & Mariano, Roberto S, 2002.
"Comparing Predictive Accuracy,"
Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
- Diebold, Francis X & Mariano, Roberto S, 1995. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 13(3), pages 253-263, July.
- Francis X. Diebold & Roberto S. Mariano, 1994. "Comparing Predictive Accuracy," NBER Technical Working Papers 0169, National Bureau of Economic Research, Inc.
- Ioannis P. Antoniades & Leonidas P. Karakatsanis & Evgenios G. Pavlos, 2020. "Dynamical Characteristics of Global Stock Markets Based on Time Dependent Tsallis Non-Extensive Statistics and Generalized Hurst Exponents," Papers 2012.06856, arXiv.org, revised Apr 2021.
- Antoniades, I.P. & Brandi, Giuseppe & Magafas, L. & Di Matteo, T., 2021. "The use of scaling properties to detect relevant changes in financial time series: A new visual warning tool," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 565(C).
- Kunkel, Robert A. & Compton, William S. & Beyer, Scott, 2003. "The turn-of-the-month effect still lives: the international evidence," International Review of Financial Analysis, Elsevier, vol. 12(2), pages 207-221.
- Huang, Yisu & Ma, Feng & Bouri, Elie & Huang, Dengshi, 2023. "A comprehensive investigation on the predictive power of economic policy uncertainty from non-U.S. countries for U.S. stock market returns," International Review of Financial Analysis, Elsevier, vol. 87(C).
- Timmermann, Allan, 2018. "Forecasting Methods in Finance," CEPR Discussion Papers 12692, C.E.P.R. Discussion Papers.
- T. Di Matteo, 2007. "Multi-scaling in finance," Quantitative Finance, Taylor & Francis Journals, vol. 7(1), pages 21-36.
- Martin, Gael M. & Frazier, David T. & Maneesoonthorn, Worapree & Loaiza-Maya, Rubén & Huber, Florian & Koop, Gary & Maheu, John & Nibbering, Didier & Panagiotelis, Anastasios, 2024.
"Bayesian forecasting in economics and finance: A modern review,"
International Journal of Forecasting, Elsevier, vol. 40(2), pages 811-839.
- Gael M. Martin & David T. Frazier & Worapree Maneesoonthorn & Ruben Loaiza-Maya & Florian Huber & Gary Koop & John Maheu & Didier Nibbering & Anastasios Panagiotelis, 2022. "Bayesian Forecasting in Economics and Finance: A Modern Review," Papers 2212.03471, arXiv.org, revised Jul 2023.
- Bui, Quynh & Ślepaczuk, Robert, 2022. "Applying Hurst Exponent in pair trading strategies on Nasdaq 100 index," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 592(C).
- Sánchez Granero, M.A. & Trinidad Segovia, J.E. & García Pérez, J., 2008. "Some comments on Hurst exponent and the long memory processes on capital markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(22), pages 5543-5551.
- Kristjanpoller, Werner & Nekhili, Ramzi & Bouri, Elie, 2024. "Blockchain ETFs and the cryptocurrency and Nasdaq markets: Multifractal and asymmetric cross-correlations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 637(C).
- Kevin E. Bassler & Gemunu H. Gunaratne & Joseph L. McCauley, 2006. "Markov Processes, Hurst Exponents, and Nonlinear Diffusion Equations with application to finance," Papers cond-mat/0602316, arXiv.org.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Vogl, Markus, 2023. "Hurst exponent dynamics of S&P 500 returns: Implications for market efficiency, long memory, multifractality and financial crises predictability by application of a nonlinear dynamics analysis framewo," Chaos, Solitons & Fractals, Elsevier, vol. 166(C).
- Brandi, Giuseppe & Di Matteo, T., 2022. "Multiscaling and rough volatility: An empirical investigation," International Review of Financial Analysis, Elsevier, vol. 84(C).
- Shi, Chunpei & Wei, Yu & Li, Xiafei & Liu, Yuntong, 2023. "Combination forecasts of China's oil futures returns based on multiple uncertainties and their connectedness with oil," Energy Economics, Elsevier, vol. 126(C).
- Sensoy, Ahmet & Tabak, Benjamin M., 2016. "Dynamic efficiency of stock markets and exchange rates," International Review of Financial Analysis, Elsevier, vol. 47(C), pages 353-371.
- Hua, Jia-Chen & Chen, Lijian & Falcon, Liberty & McCauley, Joseph L. & Gunaratne, Gemunu H., 2015. "Variable diffusion in stock market fluctuations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 419(C), pages 221-233.
- Pan, Zhiyuan & Pettenuzzo, Davide & Wang, Yudong, 2020.
"Forecasting stock returns: A predictor-constrained approach,"
Journal of Empirical Finance, Elsevier, vol. 55(C), pages 200-217.
- Davide Pettenuzzo & Zhiyuan Pan & Yudong Wang, 2017. "Forecasting Stock Returns: A Predictor-Constrained Approach," Working Papers 116, Brandeis University, Department of Economics and International Business School.
- Davide Pettenuzzo & Zhiyuan Pan & Yudong Wang, 2017. "Forecasting Stock Returns: A Predictor-Constrained Approach," Working Papers 116R, Brandeis University, Department of Economics and International Business School, revised Feb 2018.
- Nonejad, Nima, 2021. "Predicting equity premium using news-based economic policy uncertainty: Not all uncertainty changes are equally important," International Review of Financial Analysis, Elsevier, vol. 77(C).
- Giuseppe Pernagallo, 2025. "Random walks, Hurst exponent, and market efficiency," Quality & Quantity: International Journal of Methodology, Springer, vol. 59(2), pages 1097-1119, April.
- Ines Dika, 2023. "A Statistical Analysis Of The Impact Of The Informal Economy On The Comportment Of The Exchange Rates In Albania," Economy & Business Journal, International Scientific Publications, Bulgaria, vol. 17(1), pages 201-211.
- Sensoy, Ahmet & Tabak, Benjamin M., 2015. "Time-varying long term memory in the European Union stock markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 436(C), pages 147-158.
- Gkillas, Konstantinos & Gupta, Rangan & Pierdzioch, Christian, 2020.
"Forecasting realized oil-price volatility: The role of financial stress and asymmetric loss,"
Journal of International Money and Finance, Elsevier, vol. 104(C).
- Konstantinos Gkillas & Rangan Gupta & Christian Pierdzioch, 2019. "Forecasting Realized Oil-Price Volatility: The Role of Financial Stress and Asymmetric Loss," Working Papers 201903, University of Pretoria, Department of Economics.
- Frank, Johannes, 2023. "Forecasting realized volatility in turbulent times using temporal fusion transformers," FAU Discussion Papers in Economics 03/2023, Friedrich-Alexander University Erlangen-Nuremberg, Institute for Economics.
- Dennis Kant & Andreas Pick & Jasper de Winter, 2025.
"Nowcasting GDP using machine learning methods,"
AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 109(1), pages 1-24, March.
- Dennis Kant & Andreas Pick & Jasper de Winter, 2022. "Nowcasting GDP using machine learning methods," Working Papers 754, DNB.
- Matthieu Garcin, 2021. "Forecasting with fractional Brownian motion: a financial perspective," Papers 2105.09140, arXiv.org, revised Sep 2021.
- Joseph Agyapong, 2021. "Application of Taylor Rule Fundamentals in Forecasting Exchange Rates," Economies, MDPI, vol. 9(2), pages 1-27, June.
- Shi, Qi, 2023. "The RP-PCA factors and stock return predictability: An aligned approach," The North American Journal of Economics and Finance, Elsevier, vol. 64(C).
- Lan Bai & Xiafei Li & Yu Wei & Guiwu Wei, 2022. "Does crude oil futures price really help to predict spot oil price? New evidence from density forecasting," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 27(3), pages 3694-3712, July.
- Zhang, Hongwei & Zhao, Xinyi & Gao, Wang & Niu, Zibo, 2023. "The role of higher moments in predicting China's oil futures volatility: Evidence from machine learning models," Journal of Commodity Markets, Elsevier, vol. 32(C).
- Dichtl, Hubert & Drobetz, Wolfgang & Neuhierl, Andreas & Wendt, Viktoria-Sophie, 2021. "Data snooping in equity premium prediction," International Journal of Forecasting, Elsevier, vol. 37(1), pages 72-94.
- Ricardo P. Masini & Marcelo C. Medeiros & Eduardo F. Mendes, 2023.
"Machine learning advances for time series forecasting,"
Journal of Economic Surveys, Wiley Blackwell, vol. 37(1), pages 76-111, February.
- Ricardo P. Masini & Marcelo C. Medeiros & Eduardo F. Mendes, 2020. "Machine Learning Advances for Time Series Forecasting," Papers 2012.12802, arXiv.org, revised Apr 2021.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:667:y:2025:i:c:s037843712500192x. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.