IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v667y2025ics0378437125000810.html
   My bibliography  Save this article

Information index augmented eRG to model vaccination behaviour: A case study of COVID-19 in the US

Author

Listed:
  • Buonomo, Bruno
  • D’Alise, Alessandra
  • Della Marca, Rossella
  • Sannino, Francesco

Abstract

Recent pandemics triggered the development of a number of mathematical models and computational tools apt at curbing the socio-economic impact of these and future pandemics. The need to acquire solid estimates from the data led to the introduction of effective approaches such as the epidemiological Renormalization Group (eRG). A recognized relevant factor impacting the evolution of pandemics is the feedback stemming from individuals’ choices. The latter can be taken into account via the information index which accommodates the information–induced perception regarding the status of the disease and the memory of past spread. Therefore, we show how to augment the eRG through the information index. We first develop the behavioural version of the eRG (BeRG) and then test it against the US vaccination campaign for COVID-19. We find that the BeRG improves the description of the pandemic dynamics of the US divisions for which the epidemic peak occurs after the start of the vaccination campaign. Additionally, we observe, via the BeRG model, a behavioural impact on the increase in the number of vaccinated individuals for all US divisions when compared to the original eRG model. The BeRG reasonably captures the COVID-19 vaccination behaviour which has not undergone stressful periods as the nearly linear growth of the vaccinated individuals suggests. Our results strengthen the relevance of taking into account the human behaviour component when modelling pandemic evolution. To inform public health policies, the model can be readily employed to investigate the socio-epidemiological dynamics, including vaccination campaigns, for other world regions.

Suggested Citation

  • Buonomo, Bruno & D’Alise, Alessandra & Della Marca, Rossella & Sannino, Francesco, 2025. "Information index augmented eRG to model vaccination behaviour: A case study of COVID-19 in the US," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 667(C).
  • Handle: RePEc:eee:phsmap:v:667:y:2025:i:c:s0378437125000810
    DOI: 10.1016/j.physa.2025.130429
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437125000810
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2025.130429?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Lyndon P. James & Joshua A. Salomon & Caroline O. Buckee & Nicolas A. Menzies, 2021. "The Use and Misuse of Mathematical Modeling for Infectious Disease Policymaking: Lessons for the COVID-19 Pandemic," Medical Decision Making, , vol. 41(4), pages 379-385, May.
    2. Sharma, Natasha & Verma, Atul Kumar & Gupta, Arvind Kumar, 2021. "Spatial network based model forecasting transmission and control of COVID-19," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 581(C).
    3. Cacciapaglia, Giacomo & Cot, Corentin & de Hoffer, Adele & Hohenegger, Stefan & Sannino, Francesco & Vatani, Shahram, 2022. "Epidemiological theory of virus variants," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 596(C).
    4. d'Onofrio, Alberto & Manfredi, Piero, 2022. "Behavioral SIR models with incidence-based social-distancing," Chaos, Solitons & Fractals, Elsevier, vol. 159(C).
    5. Lu Tang & Yiwang Zhou & Lili Wang & Soumik Purkayastha & Leyao Zhang & Jie He & Fei Wang & Peter X.‐K. Song, 2020. "A Review of Multi‐Compartment Infectious Disease Models," International Statistical Review, International Statistical Institute, vol. 88(2), pages 462-513, August.
    6. Kumar, Anuj & Srivastava, Prashant K. & Gupta, R.P., 2019. "Nonlinear dynamics of infectious diseases via information-induced vaccination and saturated treatment," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 157(C), pages 77-99.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gupta, R.P. & Kumar, Arun, 2022. "Endemic bubble and multiple cusps generated by saturated treatment of an SIR model through Hopf and Bogdanov–Takens bifurcations," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 197(C), pages 1-21.
    2. Michael E. Darden & David Dowdy & Lauren Gardner & Barton H. Hamilton & Karen Kopecky & Melissa Marx & Nicholas W. Papageorge & Daniel Polsky & Kimberly A. Powers & Elizabeth A. Stuart & Matthew V. Za, 2022. "Modeling to inform economy‐wide pandemic policy: Bringing epidemiologists and economists together," Health Economics, John Wiley & Sons, Ltd., vol. 31(7), pages 1291-1295, July.
    3. Alkhazzan, Abdulwasea & Wang, Jungang & Nie, Yufeng & Khan, Hasib & Alzabut, Jehad, 2023. "An effective transport-related SVIR stochastic epidemic model with media coverage and Lévy noise," Chaos, Solitons & Fractals, Elsevier, vol. 175(P1).
    4. Darshan Chauhan & Avinash Unnikrishnan & Stephen D. Boyles & Priyadarshan N. Patil, 2024. "Robust maximum flow network interdiction considering uncertainties in arc capacity and resource consumption," Annals of Operations Research, Springer, vol. 335(2), pages 689-725, April.
    5. Shehzad Ali & Zhe Li & Nasheed Moqueet & Seyed M. Moghadas & Alison P. Galvani & Lisa A. Cooper & Saverio Stranges & Margaret Haworth-Brockman & Andrew D. Pinto & Miqdad Asaria & David Champredon & Da, 2024. "Incorporating Social Determinants of Health in Infectious Disease Models: A Systematic Review of Guidelines," Medical Decision Making, , vol. 44(7), pages 742-755, October.
    6. Cui, Guang-Hai & Li, Jun-Li & Dong, Kun-Xiang & Jin, Xing & Yang, Hong-Yong & Wang, Zhen, 2024. "Influence of subsidy policies against insurances on controlling the propagation of epidemic security risks in networks," Applied Mathematics and Computation, Elsevier, vol. 476(C).
    7. Fauzi, Ilham Saiful & Nuraini, Nuning & Ayu, Regina Wahyudyah Sonata & Wardani, Imaniah Bazlina & Rosady, Siti Duratun Nasiqiati, 2025. "Seasonal pattern of dengue infection in Singapore: A mechanism-based modeling and prediction," Ecological Modelling, Elsevier, vol. 501(C).
    8. Ida Johnsson & M. Hashem Pesaran & Cynthia Fan Yang, 2023. "Structural Econometric Estimation of the Basic Reproduction Number for Covid-19 across U.S. States and Selected Countries," CESifo Working Paper Series 10659, CESifo.
    9. Rocha Filho, T.M. & Moret, M.A. & Chow, C.C. & Phillips, J.C. & Cordeiro, A.J.A. & Scorza, F.A. & Almeida, A.-C.G. & Mendes, J.F.F., 2021. "A data-driven model for COVID-19 pandemic – Evolution of the attack rate and prognosis for Brazil," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    10. Kumar, Anuj & Srivastava, Prashant K. & Dong, Yueping & Takeuchi, Yasuhiro, 2020. "Optimal control of infectious disease: Information-induced vaccination and limited treatment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 542(C).
    11. Gabrick, Enrique C. & Sayari, Elaheh & Protachevicz, Paulo R. & Szezech, José D. & Iarosz, Kelly C. & de Souza, Silvio L.T. & Almeida, Alexandre C.L. & Viana, Ricardo L. & Caldas, Iberê L. & Batista, , 2023. "Unpredictability in seasonal infectious diseases spread," Chaos, Solitons & Fractals, Elsevier, vol. 166(C).
    12. Camille Delbrouck & Jennifer Alonso-García, 2024. "COVID-19 and Excess Mortality: An Actuarial Study," Risks, MDPI, vol. 12(4), pages 1-27, March.
    13. Pan Tang & Shiwen Qian & Lei Shi & Longxing Qi & Tingting Li, 2023. "The Influence of Migration to Regions with Different Coverages of Health Education on Schistosomiasis," Mathematics, MDPI, vol. 11(12), pages 1-27, June.
    14. Beate Jahn & Sarah Friedrich & Joachim Behnke & Joachim Engel & Ursula Garczarek & Ralf Münnich & Markus Pauly & Adalbert Wilhelm & Olaf Wolkenhauer & Markus Zwick & Uwe Siebert & Tim Friede, 2022. "On the role of data, statistics and decisions in a pandemic," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 106(3), pages 349-382, September.
    15. Buonomo, Bruno & Giacobbe, Andrea, 2023. "Oscillations in SIR behavioural epidemic models: The interplay between behaviour and overexposure to infection," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    16. Andres M. Kowalski & Mariela Portesi & Victoria Vampa & Marcelo Losada & Federico Holik, 2022. "Entropy-Based Informational Study of the COVID-19 Series of Data," Mathematics, MDPI, vol. 10(23), pages 1-16, December.
    17. Thul, Lawrence & Powell, Warren, 2023. "Stochastic optimization for vaccine and testing kit allocation for the COVID-19 pandemic," European Journal of Operational Research, Elsevier, vol. 304(1), pages 325-338.
    18. Manuela Alcañiz & Marc Estévez & Miguel Santolino, 2023. ""Unveiling the underlying severity of multiple pandemic indicators"," IREA Working Papers 202312, University of Barcelona, Research Institute of Applied Economics, revised Oct 2023.
    19. Das, Saduri & Srivastava, Prashant K. & Biswas, Pankaj, 2025. "The role of social media in a tuberculosis compartmental model: Exploring Hopf-bifurcation and nonlinear oscillations," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 230(C), pages 323-349.
    20. Saha, Dipa & Mitra, Sayantan & Sensharma, Ankur, 2023. "Critically spanning epidemic outbreak cluster in random geometric networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 629(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:667:y:2025:i:c:s0378437125000810. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.