Enhancing stock ranking forecasting by modeling returns with heteroscedastic Gaussian Distribution
Author
Abstract
Suggested Citation
DOI: 10.1016/j.physa.2025.130442
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Yuping Song & Xiaolong Tang & Hemin Wang & Zhiren Ma, 2023. "Volatility forecasting for stock market incorporating macroeconomic variables based on GARCH‐MIDAS and deep learning models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(1), pages 51-59, January.
- Zhang, Mengqi & Jiang, Xin & Fang, Zehua & Zeng, Yue & Xu, Ke, 2019. "High-order Hidden Markov Model for trend prediction in financial time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 517(C), pages 1-12.
- Fuli Feng & Huimin Chen & Xiangnan He & Ji Ding & Maosong Sun & Tat-Seng Chua, 2018. "Enhancing Stock Movement Prediction with Adversarial Training," Papers 1810.09936, arXiv.org, revised Jun 2019.
- Timmermann, Allan & Granger, Clive W. J., 2004.
"Efficient market hypothesis and forecasting,"
International Journal of Forecasting, Elsevier, vol. 20(1), pages 15-27.
- Timmermann, Allan & Granger, Clive, 2002. "Efficient Market Hypothesis and Forecasting," CEPR Discussion Papers 3593, C.E.P.R. Discussion Papers.
- Xingyu Zhou & Zhisong Pan & Guyu Hu & Siqi Tang & Cheng Zhao, 2018. "Stock Market Prediction on High-Frequency Data Using Generative Adversarial Nets," Mathematical Problems in Engineering, Hindawi, vol. 2018, pages 1-11, April.
- Liu, Jianan & Stambaugh, Robert F. & Yuan, Yu, 2019.
"Size and value in China,"
Journal of Financial Economics, Elsevier, vol. 134(1), pages 48-69.
- Jianan Liu & Robert F. Stambaugh & Yu Yuan, 2018. "Size and Value in China," NBER Working Papers 24458, National Bureau of Economic Research, Inc.
- Hengxu Lin & Dong Zhou & Weiqing Liu & Jiang Bian, 2021. "Learning Multiple Stock Trading Patterns with Temporal Routing Adaptor and Optimal Transport," Papers 2106.12950, arXiv.org, revised Jun 2021.
- Poterba, James M. & Summers, Lawrence H., 1988.
"Mean reversion in stock prices : Evidence and Implications,"
Journal of Financial Economics, Elsevier, vol. 22(1), pages 27-59, October.
- James M. Poterba & Lawrence H. Summers, 1987. "Mean Reversion in Stock Prices: Evidence and Implications," NBER Working Papers 2343, National Bureau of Economic Research, Inc.
- Yawei Li & Shuqi Lv & Xinghua Liu & Qiuyue Zhang & Siew Ann Cheong, 2022. "Incorporating Transformers and Attention Networks for Stock Movement Prediction," Complexity, Hindawi, vol. 2022, pages 1-10, February.
- Wenjie Lu & Jiazheng Li & Yifan Li & Aijun Sun & Jingyang Wang, 2020. "A CNN-LSTM-Based Model to Forecast Stock Prices," Complexity, Hindawi, vol. 2020, pages 1-10, November.
- Fuli Feng & Xiangnan He & Xiang Wang & Cheng Luo & Yiqun Liu & Tat-Seng Chua, 2018. "Temporal Relational Ranking for Stock Prediction," Papers 1809.09441, arXiv.org, revised Jan 2019.
- Fama, Eugene F. & French, Kenneth R., 1993. "Common risk factors in the returns on stocks and bonds," Journal of Financial Economics, Elsevier, vol. 33(1), pages 3-56, February.
- Maqsood, Haider & Mehmood, Irfan & Maqsood, Muazzam & Yasir, Muhammad & Afzal, Sitara & Aadil, Farhan & Selim, Mahmoud Mohamed & Muhammad, Khan, 2020. "A local and global event sentiment based efficient stock exchange forecasting using deep learning," International Journal of Information Management, Elsevier, vol. 50(C), pages 432-451.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Shuo Sun & Rundong Wang & Bo An, 2021. "Reinforcement Learning for Quantitative Trading," Papers 2109.13851, arXiv.org.
- Kelvin J. L. Koa & Yunshan Ma & Ritchie Ng & Tat-Seng Chua, 2023. "Diffusion Variational Autoencoder for Tackling Stochasticity in Multi-Step Regression Stock Price Prediction," Papers 2309.00073, arXiv.org, revised Oct 2023.
- Wentao Xu & Weiqing Liu & Lewen Wang & Yingce Xia & Jiang Bian & Jian Yin & Tie-Yan Liu, 2021. "HIST: A Graph-based Framework for Stock Trend Forecasting via Mining Concept-Oriented Shared Information," Papers 2110.13716, arXiv.org, revised Jan 2022.
- Jinan Zou & Qingying Zhao & Yang Jiao & Haiyao Cao & Yanxi Liu & Qingsen Yan & Ehsan Abbasnejad & Lingqiao Liu & Javen Qinfeng Shi, 2022. "Stock Market Prediction via Deep Learning Techniques: A Survey," Papers 2212.12717, arXiv.org, revised Feb 2023.
- Semenov, Andrei, 2021. "Measuring the stock's factor beta and identifying risk factors under market inefficiency," The Quarterly Review of Economics and Finance, Elsevier, vol. 80(C), pages 635-649.
- Kentaro Imajo & Kentaro Minami & Katsuya Ito & Kei Nakagawa, 2020. "Deep Portfolio Optimization via Distributional Prediction of Residual Factors," Papers 2012.07245, arXiv.org.
- Stefan Nagel, 2013.
"Empirical Cross-Sectional Asset Pricing,"
Annual Review of Financial Economics, Annual Reviews, vol. 5(1), pages 167-199, November.
- Stefan Nagel, 2012. "Empirical Cross-Sectional Asset Pricing," NBER Working Papers 18554, National Bureau of Economic Research, Inc.
- Nagel, Stefan, 2012. "Empirical Cross-Sectional Asset Pricing," CEPR Discussion Papers 9227, C.E.P.R. Discussion Papers.
- Jian Guo & Saizhuo Wang & Lionel M. Ni & Heung-Yeung Shum, 2022. "Quant 4.0: Engineering Quantitative Investment with Automated, Explainable and Knowledge-driven Artificial Intelligence," Papers 2301.04020, arXiv.org.
- Fenghua Wen & Yujie Yuan & Wei‐Xing Zhou, 2021. "Cross‐shareholding networks and stock price synchronicity: Evidence from China," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 26(1), pages 914-948, January.
- Kim, Saejoon, 2021. "Enhanced factor investing in the Korean stock market," Pacific-Basin Finance Journal, Elsevier, vol. 67(C).
- Huo, Xiaolin & Jiang, Dayan & Qiu, Zhigang & Yang, Sijie, 2022. "The impacts of dual carbon goals on asset prices in China," Journal of Asian Economics, Elsevier, vol. 83(C).
- Psaradellis, Ioannis & Laws, Jason & Pantelous, Athanasios A. & Sermpinis, Georgios, 2023. "Technical analysis, spread trading, and data snooping control," International Journal of Forecasting, Elsevier, vol. 39(1), pages 178-191.
- Huang, Yong & Uchida, Konari & Yu, Xuanying & Zha, Daolin, 2021. "Market timing in private equity placements: Empirical evidence from China," Pacific-Basin Finance Journal, Elsevier, vol. 69(C).
- Javid, Attiya Yasmin & Ahmad, Eatzaz, 2008. "Testing multifactor capital asset pricing model in case of Pakistani market," MPRA Paper 37341, University Library of Munich, Germany.
- Zhang, Jinhua & Wang, Guipu & Yan, Cheng, 2020. "Can foreign equity funds outperform their benchmarks? New evidence from fund-holding data for China," Economic Modelling, Elsevier, vol. 90(C), pages 11-20.
- Chi, Yeguang & Li, Xiaoming, 2019. "Beauties of the emperor: An investigation of a Chinese government bailout," Journal of Financial Markets, Elsevier, vol. 44(C), pages 42-70.
- John Y. Campbell & John Cochrane, 1999.
"Force of Habit: A Consumption-Based Explanation of Aggregate Stock Market Behavior,"
Journal of Political Economy, University of Chicago Press, vol. 107(2), pages 205-251, April.
- John Y. Campbell & John H. Cochrane, 1994. "By force of habit: a consumption-based explanation of aggregate stock market behavior," Working Papers 94-17, Federal Reserve Bank of Philadelphia.
- Campbell, John & Cochrane, John H., 1999. "By Force of Habit: A Consumption-Based Explanation of Aggregate Stock Market Behavior," Scholarly Articles 3119444, Harvard University Department of Economics.
- John Y. Campbell & John H. Cochrane, 1995. "By Force of Habit: A Consumption-Based Explanation of Aggregate Stock Market Behavior," NBER Working Papers 4995, National Bureau of Economic Research, Inc.
- John Y. Campbell & John H. Cochrane, 1994. "By Force of Habit: A Consumption-Based Explanation of Aggregate Stock Market Behavior," CRSP working papers 412, Center for Research in Security Prices, Graduate School of Business, University of Chicago.
- Chun, Rodney M., 2000. "Compensation vouchers and equity markets: Evidence from Hungary," Journal of Banking & Finance, Elsevier, vol. 24(7), pages 1155-1178, July.
- Lin, Qi, 2022. "Understanding idiosyncratic momentum in the Chinese stock market," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 76(C).
- Muhammad Usman Arshad, 2021. "Forecasted E/P Ratio and ROE: Shanghai Stock Exchange (SSE), China," SAGE Open, , vol. 11(2), pages 21582440211, June.
More about this item
Keywords
Stock ranking forecasting; Deep learning; Maximum likelihood principle; Heteroscedastic; Gaussian distribution;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:664:y:2025:i:c:s0378437125000949. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.