IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v655y2024ics0378437124006794.html
   My bibliography  Save this article

A clustering coefficient structural entropy of complex networks

Author

Listed:
  • Zhang, Zhaobo
  • Li, Meizhu
  • Zhang, Qi

Abstract

The structural entropy is a quantification of the topological structural complexity of the static complex networks, which is defined based on the structural characteristics and the Shannon entropy. For instance, the ’degree structural entropy’ is based on the network’s ’first-order’ topological properties: the degree of each node. The ’betweenness structural entropy’ is based on the betweenness centrality of nodes, which is a global topological structural property of static complex networks. The two different structural entropy give two completely different views of the network’s topological structural complexity. However, a ’mesoscopic’ structural entropy is still missing in the network theory. In this work, a clustering coefficient structural entropy of complex networks is proposed to quantify the structural complexity of static networks on the mesoscopic scale. The effectivity of the proposed ’mesoscopic’ structural entropy is verified in a series of networks that grow from two different seed networks under the Barabási–Albert and Erdős–Rényi rules. We also find that the quantification of structural entropy effectively reflects the impact of structural heterogeneity on the growth rule in the early stages of seed network growth. Finally, we observe that the structural ratio of the clustering coefficient structural entropy and degree structural entropy remains stable and unchanged when network growth reaches maturity. We also note that the convergence rate of the network’s structural entropy ratio varies under different guiding rules. These findings suggest that the differences in structural entropy can serve as a novel tool for measuring the stability of complex networks and provide fresh insights into achieving a ’balanced’ state in the dynamic evolution of complex networks.

Suggested Citation

  • Zhang, Zhaobo & Li, Meizhu & Zhang, Qi, 2024. "A clustering coefficient structural entropy of complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 655(C).
  • Handle: RePEc:eee:phsmap:v:655:y:2024:i:c:s0378437124006794
    DOI: 10.1016/j.physa.2024.130170
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437124006794
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2024.130170?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wen, Tao & Jiang, Wen, 2019. "Measuring the complexity of complex network by Tsallis entropy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 526(C).
    2. Christian von Mering & Roland Krause & Berend Snel & Michael Cornell & Stephen G. Oliver & Stanley Fields & Peer Bork, 2002. "Comparative assessment of large-scale data sets of protein–protein interactions," Nature, Nature, vol. 417(6887), pages 399-403, May.
    3. Wen, Tao & Deng, Yong, 2020. "The vulnerability of communities in complex networks: An entropy approach," Reliability Engineering and System Safety, Elsevier, vol. 196(C).
    4. Tiziano Squartini & Giorgio Fagiolo & Diego Garlaschelli, 2011. "Randomizing world trade. II. A weighted network analysis," Papers 1103.1249, arXiv.org, revised Nov 2011.
    5. Qi Zhang & Meizhu Li & Yong Deng, 2016. "A new structure entropy of complex networks based on nonextensive statistical mechanics," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 27(10), pages 1-12, October.
    6. Lei, Mingli & Cheong, Kang Hao, 2022. "Node influence ranking in complex networks: A local structure entropy approach," Chaos, Solitons & Fractals, Elsevier, vol. 160(C).
    7. Han, Wenchen & Feng, Yuee & Qian, Xiaolan & Yang, Qihui & Huang, Changwei, 2020. "Clusters and the entropy in opinion dynamics on complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 559(C).
    8. Qiuya Gao & Tao Wen & Yong Deng, 2021. "Information Volume Fractal Dimension," FRACTALS (fractals), World Scientific Publishing Co. Pte. Ltd., vol. 29(08), pages 1-9, December.
    9. Yuanzhi Yang & Lei Yu & Xing Wang & Siyi Chen & You Chen & Yipeng Zhou, 2020. "A novel method to identify influential nodes in complex networks," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 31(02), pages 1-14, February.
    10. Zareie, Ahmad & Sheikhahmadi, Amir & Fatemi, Adel, 2017. "Influential nodes ranking in complex networks: An entropy-based approach," Chaos, Solitons & Fractals, Elsevier, vol. 104(C), pages 485-494.
    11. Zhang, Qi & Li, Meizhu, 2022. "A betweenness structural entropy of complex networks," Chaos, Solitons & Fractals, Elsevier, vol. 161(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wu, Yali & Dong, Ang & Ren, Yuanguang & Jiang, Qiaoyong, 2023. "Identify influential nodes in complex networks: A k-orders entropy-based method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 632(P1).
    2. Zhang, Qi & Li, Meizhu, 2022. "A betweenness structural entropy of complex networks," Chaos, Solitons & Fractals, Elsevier, vol. 161(C).
    3. Feng, Deyue & Li, Meizhu & Zhang, Qi, 2025. "Node clustering in complex networks based on structural similarity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 658(C).
    4. Zhu, Xiaoyu & Hao, Rongxia, 2024. "Identifying influential nodes in social networks via improved Laplacian centrality," Chaos, Solitons & Fractals, Elsevier, vol. 189(P1).
    5. Zhao, Tong & Li, Zhen & Deng, Yong, 2024. "Linearity in Deng entropy," Chaos, Solitons & Fractals, Elsevier, vol. 178(C).
    6. Wang, Ying & Zheng, Yunan & Shi, Xuelei & Liu, Yiguang, 2022. "An effective heuristic clustering algorithm for mining multiple critical nodes in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 588(C).
    7. Nikougoftar, Elaheh, 2024. "Strategic node identification in complex network dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 187(C).
    8. Ortiz-Vilchis, Pilar & Lei, Mingli & Ramirez-Arellano, Aldo, 2024. "Reformulation of Deng information dimension of complex networks based on a sigmoid asymptote," Chaos, Solitons & Fractals, Elsevier, vol. 180(C).
    9. Wang, Yan & Li, Haozhan & Zhang, Ling & Zhao, Linlin & Li, Wanlan, 2022. "Identifying influential nodes in social networks: Centripetal centrality and seed exclusion approach," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    10. Marco Dueñas & Giorgio Fagiolo, 2013. "Modeling the International-Trade Network: a gravity approach," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 8(1), pages 155-178, April.
    11. Wang, Xiaojie & Slamu, Wushour & Guo, Wenqiang & Wang, Sixiu & Ren, Yan, 2022. "A novel semi local measure of identifying influential nodes in complex networks," Chaos, Solitons & Fractals, Elsevier, vol. 158(C).
    12. Chaharborj, Sarkhosh Seddighi & Nabi, Khondoker Nazmoon & Feng, Koo Lee & Chaharborj, Shahriar Seddighi & Phang, Pei See, 2022. "Controlling COVID-19 transmission with isolation of influential nodes," Chaos, Solitons & Fractals, Elsevier, vol. 159(C).
    13. Zhou, Qianli & Deng, Yong, 2023. "Generating Sierpinski gasket from matrix calculus in Dempster–Shafer theory," Chaos, Solitons & Fractals, Elsevier, vol. 166(C).
    14. Nicole Palan & Nadia Simoes & Nuno Crespo, 2021. "Measuring fifty years of trade globalisation," The World Economy, Wiley Blackwell, vol. 44(6), pages 1859-1884, June.
    15. Chun Gui, 2024. "Link prediction based on spectral analysis," PLOS ONE, Public Library of Science, vol. 19(1), pages 1-22, January.
    16. Zhang, Qi & Deng, Ronghao & Ding, Kaixing & Li, Meizhu, 2024. "Structural analysis and the sum of nodes’ betweenness centrality in complex networks," Chaos, Solitons & Fractals, Elsevier, vol. 185(C).
    17. Zareie, Ahmad & Sheikhahmadi, Amir, 2019. "EHC: Extended H-index Centrality measure for identification of users’ spreading influence in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 514(C), pages 141-155.
    18. Zhang, Jianhua & Wang, Ziqi & Wang, Shuliang & Shao, Wenchao & Zhao, Xun & Liu, Weizhi, 2021. "Vulnerability assessments of weighted urban rail transit networks with integrated coupled map lattices," Reliability Engineering and System Safety, Elsevier, vol. 214(C).
    19. Chen, Gaolin & Zhou, Shuming & Li, Min & Zhang, Hong, 2022. "Evaluation of community vulnerability based on communicability and structural dissimilarity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 606(C).
    20. Liu, Jia-Bao & Zheng, Ya-Qian & Lee, Chien-Chiang, 2024. "Statistical analysis of the regional air quality index of Yangtze River Delta based on complex network theory," Applied Energy, Elsevier, vol. 357(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:655:y:2024:i:c:s0378437124006794. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.