IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v180y2024ics0960077924001206.html
   My bibliography  Save this article

Reformulation of Deng information dimension of complex networks based on a sigmoid asymptote

Author

Listed:
  • Ortiz-Vilchis, Pilar
  • Lei, Mingli
  • Ramirez-Arellano, Aldo

Abstract

Deng’s entropy is a measure used to determine the volume fractal dimension of a mass function. It has been employed in pattern recognition and conflict management applications. Recently, Deng’s entropy has been employed in complex networks to measure the information volume when handling complex and uncertain information. The general asymptote for computing the Deng information dimension of complex networks was assumed to be a power law in a previous study; meanwhile, the asymptote to obtain the information dimension is a logarithmic function. This study proposes a sigmoid asymptote for Deng’s information dimensions in complex networks. This new formulation shows that the non-specificity is maximal at ɛ = 1 and minimal when ɛ=Δ. The oppositive occurs with the maximum discord at ɛ = 1 and minimal discord at ɛ=Δ. In addition, the asymptotic values η and δ and the inflexion point ψ of the Deng entropy of the complex networks were revealed. Twenty-eight real-world and 789 synthetic networks were used to validate the proposed method. Our results show that the sigmoid asymptote best fits the empirical Deng entropy and dsD differs substantially from dD and ddD. In addition, dsD more accurately characterises the synthetic networks.

Suggested Citation

  • Ortiz-Vilchis, Pilar & Lei, Mingli & Ramirez-Arellano, Aldo, 2024. "Reformulation of Deng information dimension of complex networks based on a sigmoid asymptote," Chaos, Solitons & Fractals, Elsevier, vol. 180(C).
  • Handle: RePEc:eee:chsofr:v:180:y:2024:i:c:s0960077924001206
    DOI: 10.1016/j.chaos.2024.114569
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077924001206
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2024.114569?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:180:y:2024:i:c:s0960077924001206. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.