IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v564y2021ics0378437120308153.html
   My bibliography  Save this article

Hidden unit specialization in layered neural networks: ReLU vs. sigmoidal activation

Author

Listed:
  • Oostwal, Elisa
  • Straat, Michiel
  • Biehl, Michael

Abstract

By applying concepts from the statistical physics of learning, we study layered neural networks of rectified linear units (ReLU). The comparison with conventional, sigmoidal activation functions is in the center of interest. We compute typical learning curves for large shallow networks with K hidden units in matching student teacher scenarios. The systems undergo phase transitions, i.e. sudden changes of the generalization performance via the process of hidden unit specialization at critical sizes of the training set. Surprisingly, our results show that the training behavior of ReLU networks is qualitatively different from that of networks with sigmoidal activations. In networks with K≥3 sigmoidal hidden units, the transition is discontinuous: Specialized network configurations co-exist and compete with states of poor performance even for very large training sets. On the contrary, the use of ReLU activations results in continuous transitions for all K. For large enough training sets, two competing, differently specialized states display similar generalization abilities, which coincide exactly for large hidden layers in the limit K→∞. Our findings are also confirmed in Monte Carlo simulations of the training processes.

Suggested Citation

  • Oostwal, Elisa & Straat, Michiel & Biehl, Michael, 2021. "Hidden unit specialization in layered neural networks: ReLU vs. sigmoidal activation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 564(C).
  • Handle: RePEc:eee:phsmap:v:564:y:2021:i:c:s0378437120308153
    DOI: 10.1016/j.physa.2020.125517
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437120308153
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2020.125517?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Richard H. R. Hahnloser & Rahul Sarpeshkar & Misha A. Mahowald & Rodney J. Douglas & H. Sebastian Seung, 2000. "Correction: Digital selection and analogue amplification coexist in a cortex-inspired silicon circuit," Nature, Nature, vol. 408(6815), pages 1012-1012, December.
    2. Cocco, S. & Monasson, R. & Posani, L. & Rosay, S. & Tubiana, J., 2018. "Statistical physics and representations in real and artificial neural networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 504(C), pages 45-76.
    3. Richard H. R. Hahnloser & Rahul Sarpeshkar & Misha A. Mahowald & Rodney J. Douglas & H. Sebastian Seung, 2000. "Digital selection and analogue amplification coexist in a cortex-inspired silicon circuit," Nature, Nature, vol. 405(6789), pages 947-951, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiaoyu Li & Yuefeng Du & Lin Yao & Jun Wu & Lei Liu, 2021. "Design and Experiment of a Broken Corn Kernel Detection Device Based on the Yolov4-Tiny Algorithm," Agriculture, MDPI, vol. 11(12), pages 1-17, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Wen & Yan, Shaoshan & Li, Jian & Tian, Xin & Yoshida, Taketoshi, 2022. "Credit risk prediction of SMEs in supply chain finance by fusing demographic and behavioral data," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 158(C).
    2. Phattara Khumprom & Nita Yodo, 2019. "A Data-Driven Predictive Prognostic Model for Lithium-ion Batteries based on a Deep Learning Algorithm," Energies, MDPI, vol. 12(4), pages 1-21, February.
    3. Kei Nakagawa & Masaya Abe & Junpei Komiyama, 2019. "A Robust Transferable Deep Learning Framework for Cross-sectional Investment Strategy," Papers 1910.01491, arXiv.org.
    4. Baiti-Ahmad Awaluddin & Chun-Tang Chao & Juing-Shian Chiou, 2023. "Investigating Effective Geometric Transformation for Image Augmentation to Improve Static Hand Gestures with a Pre-Trained Convolutional Neural Network," Mathematics, MDPI, vol. 11(23), pages 1-23, November.
    5. Bodendorf, Frank & Xie, Qiao & Merkl, Philipp & Franke, Jörg, 2022. "A multi-perspective approach to support collaborative cost management in supplier-buyer dyads," International Journal of Production Economics, Elsevier, vol. 245(C).
    6. Ahmed A Metwally & Philip S Yu & Derek Reiman & Yang Dai & Patricia W Finn & David L Perkins, 2019. "Utilizing longitudinal microbiome taxonomic profiles to predict food allergy via Long Short-Term Memory networks," PLOS Computational Biology, Public Library of Science, vol. 15(2), pages 1-16, February.
    7. Kim, Seongsu & Kim, Junghwan, 2023. "Assessing fuel economy and NOx emissions of a hydrogen engine bus using neural network algorithms for urban mass transit systems," Energy, Elsevier, vol. 275(C).
    8. Maoz Shamir, 2009. "The Temporal Winner-Take-All Readout," PLOS Computational Biology, Public Library of Science, vol. 5(2), pages 1-13, February.
    9. Joanne C Wen & Cecilia S Lee & Pearse A Keane & Sa Xiao & Ariel S Rokem & Philip P Chen & Yue Wu & Aaron Y Lee, 2019. "Forecasting future Humphrey Visual Fields using deep learning," PLOS ONE, Public Library of Science, vol. 14(4), pages 1-14, April.
    10. Jingfen Lan & Ziheng Liao & A. K. Alvi Haque & Qiang Yu & Kun Xie & Yang Guo, 2024. "CNVbd: A Method for Copy Number Variation Detection and Boundary Search," Mathematics, MDPI, vol. 12(3), pages 1-15, January.
    11. Richter, Lucas & Lehna, Malte & Marchand, Sophie & Scholz, Christoph & Dreher, Alexander & Klaiber, Stefan & Lenk, Steve, 2022. "Artificial Intelligence for Electricity Supply Chain automation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 163(C).
    12. González-Muñiz, Ana & Díaz, Ignacio & Cuadrado, Abel A. & García-Pérez, Diego, 2022. "Health indicator for machine condition monitoring built in the latent space of a deep autoencoder," Reliability Engineering and System Safety, Elsevier, vol. 224(C).
    13. Hancock, Thomas O. & Broekaert, Jan & Hess, Stephane & Choudhury, Charisma F., 2020. "Quantum probability: A new method for modelling travel behaviour," Transportation Research Part B: Methodological, Elsevier, vol. 139(C), pages 165-198.
    14. Bernhard Nessler & Michael Pfeiffer & Lars Buesing & Wolfgang Maass, 2013. "Bayesian Computation Emerges in Generic Cortical Microcircuits through Spike-Timing-Dependent Plasticity," PLOS Computational Biology, Public Library of Science, vol. 9(4), pages 1-30, April.
    15. Artem Kuriksha, 2021. "An Economy of Neural Networks: Learning from Heterogeneous Experiences," Papers 2110.11582, arXiv.org.
    16. Li Zhang & Qun Hao & Jie Cao, 2023. "Attention-Based Fine-Grained Lightweight Architecture for Fuji Apple Maturity Classification in an Open-World Orchard Environment," Agriculture, MDPI, vol. 13(2), pages 1-20, January.
    17. Gianluca De Nard & Simon Hediger & Markus Leippold, 2022. "Subsampled factor models for asset pricing: The rise of Vasa," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(6), pages 1217-1247, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:564:y:2021:i:c:s0378437120308153. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.