IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v509y2018icp588-598.html
   My bibliography  Save this article

Master equation for the degree distribution of a Duplication and Divergence network

Author

Listed:
  • Sudbrack, Vítor
  • Brunnet, Leonardo G.
  • de Almeida, Rita M.C.
  • Ferreira, Ricardo M.
  • Gamermann, Daniel

Abstract

Network growth as described by the Duplication–Divergence model proposes a simple general idea for the evolution dynamics of natural networks. In particular it is an alternative to the well known Barabási–Albert model when applied to protein–protein interaction networks. In this work we derive a master equation for the node degree distribution of networks growing via Duplication and Divergence and we obtain an expression for the total number of links and for the degree distribution as a function of the number of nodes. Using algebra tools we investigate the degree distribution asymptotic behavior. Analytic results show that the network nodes average degree converges if the total mutation rate is greater than 0.5 and diverges otherwise. Treating original and duplicated node mutation rates as independent parameters has no effect on this result. However, difference in these parameters results in a slower rate of convergence and in different degree distributions. The more different these parameters are, the denser the tail of the distribution. We compare the solutions obtained with simulated networks. These results are in good agreement with the expected values from the derived expressions. The method developed is a robust tool to investigate other models for network growing dynamics.

Suggested Citation

  • Sudbrack, Vítor & Brunnet, Leonardo G. & de Almeida, Rita M.C. & Ferreira, Ricardo M. & Gamermann, Daniel, 2018. "Master equation for the degree distribution of a Duplication and Divergence network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 588-598.
  • Handle: RePEc:eee:phsmap:v:509:y:2018:i:c:p:588-598
    DOI: 10.1016/j.physa.2018.06.066
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437118307908
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2018.06.066?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ferreira, Ricardo M. & de Almeida, Rita M.C. & Brunnet, Leonardo G., 2017. "Analytic solutions for links and triangles distributions in finite Barabási–Albert networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 466(C), pages 105-110.
    2. Pagani, Giuliano Andrea & Aiello, Marco, 2013. "The Power Grid as a complex network: A survey," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(11), pages 2688-2700.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gamermann, D. & Triana-Dopico, J. & Jaime, R., 2019. "A comprehensive statistical study of metabolic and protein–protein interaction network properties," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 534(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tio, Adonis E. & Hill, David J. & Ma, Jin, 2020. "Can graph properties determine future grid adequacy for power injection diversity?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 550(C).
    2. Lu Pang & Cheng Hu & Juan Yu & Haijun Jiang, 2022. "Fixed-Time Synchronization for Fuzzy-Based Impulsive Complex Networks," Mathematics, MDPI, vol. 10(9), pages 1-16, May.
    3. Pandey, Pradumn Kumar & Badarla, Venkataramana, 2018. "Reconstruction of network topology using status-time-series data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 573-583.
    4. Gianluca Fulli & Marcelo Masera & Catalin Felix Covrig & Francesco Profumo & Ettore Bompard & Tao Huang, 2017. "The EU Electricity Security Decision-Analytic Framework: Status and Perspective Developments," Energies, MDPI, vol. 10(4), pages 1-20, March.
    5. Ma, Li & Wang, Lingfeng & Liu, Zhaoxi, 2021. "Multi-level trading community formation and hybrid trading network construction in local energy market," Applied Energy, Elsevier, vol. 285(C).
    6. Ghafory-Ashtiany, Mohsen & Arghavani, Mahban, 2022. "Physical performance of power grids against earthquakes: from framework to implementation," International Journal of Critical Infrastructure Protection, Elsevier, vol. 39(C).
    7. Ahmad, Nasir & Derrible, Sybil, 2018. "An information theory based robustness analysis of energy mix in US States," Energy Policy, Elsevier, vol. 120(C), pages 167-174.
    8. Azzolin, Alberto & Dueñas-Osorio, Leonardo & Cadini, Francesco & Zio, Enrico, 2018. "Electrical and topological drivers of the cascading failure dynamics in power transmission networks," Reliability Engineering and System Safety, Elsevier, vol. 175(C), pages 196-206.
    9. Claudio M. Rocco & Kash Barker & Jose Moronta, 2022. "Determining the best algorithm to detect community structures in networks: application to power systems," Environment Systems and Decisions, Springer, vol. 42(2), pages 251-264, June.
    10. Gangwal, Utkarsh & Singh, Mayank & Pandey, Pradumn Kumar & Kamboj, Deepak & Chatterjee, Samrat & Bhatia, Udit, 2022. "Identifying early-warning indicators of onset of sudden collapse in networked infrastructure systems against sequential disruptions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 591(C).
    11. Sabarathinam Srinivasan & Suresh Kumarasamy & Zacharias E. Andreadakis & Pedro G. Lind, 2023. "Artificial Intelligence and Mathematical Models of Power Grids Driven by Renewable Energy Sources: A Survey," Energies, MDPI, vol. 16(14), pages 1-56, July.
    12. Goddet, Etienne & Retière, Nicolas & Stojanović, Vojislav & Dieudonné, Anca & Genoulaz, Jérôme & Guichon, Jean-Michel, 2019. "Maximizing the algebraic connectivity of meshed electrical pathways used as current return network," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 158(C), pages 18-31.
    13. Xiao, Guanping & Zheng, Zheng & Wang, Haoqin, 2017. "Evolution of Linux operating system network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 466(C), pages 249-258.
    14. Antonakakis, Nikolaos & Gogas, Periklis & Papadimitriou, Theophilos & Sarantitis, Georgios Antonios, 2016. "International business cycle synchronization since the 1870s: Evidence from a novel network approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 447(C), pages 286-296.
    15. Espejo, Rafael & Lumbreras, Sara & Ramos, Andres, 2018. "Analysis of transmission-power-grid topology and scalability, the European case study," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 383-395.
    16. Hu, Jianqiang & Yu, Jie & Cao, Jinde & Ni, Ming & Yu, Wenjie, 2014. "Topological interactive analysis of power system and its communication module: A complex network approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 416(C), pages 99-111.
    17. Wang, Shuliang & Lv, Wenzhuo & Zhang, Jianhua & Luan, Shengyang & Chen, Chen & Gu, Xifeng, 2021. "Method of power network critical nodes identification and robustness enhancement based on a cooperative framework," Reliability Engineering and System Safety, Elsevier, vol. 207(C).
    18. Kashyap, G. & Ambika, G., 2019. "Link deletion in directed complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 514(C), pages 631-643.
    19. Kashin Sugishita & Yasuo Asakura, 2021. "Vulnerability studies in the fields of transportation and complex networks: a citation network analysis," Public Transport, Springer, vol. 13(1), pages 1-34, March.
    20. Ioannis Dassios & Andrew Keane & Paul Cuffe, 2019. "Calculating Nodal Voltages Using the Admittance Matrix Spectrum of an Electrical Network," Mathematics, MDPI, vol. 7(1), pages 1-6, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:509:y:2018:i:c:p:588-598. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.