IDEAS home Printed from https://ideas.repec.org/a/eee/ijocip/v41y2023ics1874548223000136.html
   My bibliography  Save this article

Robustness analysis of electricity networks against failure or attack: The case of the Australian National Electricity Market (NEM)

Author

Listed:
  • Wang, Wensheng
  • Karimi, Faezeh
  • Khalilpour, Kaveh
  • Green, David
  • Varvarigos, Manos

Abstract

This study explores network science algorithms for the robustness analysis of electricity networks. We first investigate the characteristics of key network models including random graphs, small-world, and scale-free networks. Then, various measures are explored for the robustness of such networks against failure or attack, utilizing topological features and percolation theory. Both weighted and unweighted scenarios are studied, with network voltage considered as the edge weight. For a case study, we investigate the network characteristics as well as the robustness of the Australian National Electricity Market (NEM) network on the basis of these models and theories.

Suggested Citation

  • Wang, Wensheng & Karimi, Faezeh & Khalilpour, Kaveh & Green, David & Varvarigos, Manos, 2023. "Robustness analysis of electricity networks against failure or attack: The case of the Australian National Electricity Market (NEM)," International Journal of Critical Infrastructure Protection, Elsevier, vol. 41(C).
  • Handle: RePEc:eee:ijocip:v:41:y:2023:i:c:s1874548223000136
    DOI: 10.1016/j.ijcip.2023.100600
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1874548223000136
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ijcip.2023.100600?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gergely Palla & Imre Derényi & Illés Farkas & Tamás Vicsek, 2005. "Uncovering the overlapping community structure of complex networks in nature and society," Nature, Nature, vol. 435(7043), pages 814-818, June.
    2. Réka Albert & Hawoong Jeong & Albert-László Barabási, 2000. "Error and attack tolerance of complex networks," Nature, Nature, vol. 406(6794), pages 378-382, July.
    3. Dangalchev, Chavdar, 2004. "Generation models for scale-free networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 338(3), pages 659-671.
    4. Yang Shunkun & Zhang Jiaquan & Lu Dan, 2016. "Prediction of Cascading Failures in Spatial Networks," PLOS ONE, Public Library of Science, vol. 11(4), pages 1-11, April.
    5. Wang, Jianwei & Rong, Lili & Zhang, Liang & Zhang, Zhongzhi, 2008. "Attack vulnerability of scale-free networks due to cascading failures," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(26), pages 6671-6678.
    6. M. E. J. Newman & D. J. Watts, 1999. "Scaling and Percolation in the Small-World Network Model," Working Papers 99-05-034, Santa Fe Institute.
    7. Mahmoud Saleh & Yusef Esa & Ahmed Mohamed, 2018. "Applications of Complex Network Analysis in Electric Power Systems," Energies, MDPI, vol. 11(6), pages 1-16, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cerqueti, Roy & Ciciretti, Rocco & Dalò, Ambrogio & Nicolosi, Marco, 2022. "A new measure of the resilience for networks of funds with applications to socially responsible investments," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 593(C).
    2. Selen Onel & Abe Zeid & Sagar Kamarthi, 2011. "The structure and analysis of nanotechnology co-author and citation networks," Scientometrics, Springer;Akadémiai Kiadó, vol. 89(1), pages 119-138, October.
    3. Wang, Jianwei & Jiang, Chen & Qian, Jianfei, 2014. "Robustness of interdependent networks with different link patterns against cascading failures," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 393(C), pages 535-541.
    4. Liu, Hao & Chen, Xin & Huo, Long & Zhang, Yadong & Niu, Chunming, 2022. "Impact of inter-network assortativity on robustness against cascading failures in cyber–physical power systems," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    5. Terrill L. Frantz & Marcelo Cataldo & Kathleen M. Carley, 2009. "Robustness of centrality measures under uncertainty: Examining the role of network topology," Computational and Mathematical Organization Theory, Springer, vol. 15(4), pages 303-328, December.
    6. Juanjuan Luo & Teng Fei & Meng Tian & Yifei Liu & Meng Bian, 2023. "Sensitivity metrics of complex network based on co-occurrence truth table: exemplified by a high-speed rail network," Journal of Geographical Systems, Springer, vol. 25(4), pages 519-538, October.
    7. Li, Xin-Feng & Lu, Zhe-Ming, 2016. "Optimizing the controllability of arbitrary networks with genetic algorithm," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 447(C), pages 422-433.
    8. Marcel Salathé & James H Jones, 2010. "Dynamics and Control of Diseases in Networks with Community Structure," PLOS Computational Biology, Public Library of Science, vol. 6(4), pages 1-11, April.
    9. Kibae Kim & Jörn Altmann, 2015. "Effect of Homophily on Network Formation," TEMEP Discussion Papers 2015121, Seoul National University; Technology Management, Economics, and Policy Program (TEMEP), revised Mar 2017.
    10. Michele Giusfredi & Franco Bagnoli, 2020. "From Color-Avoiding to Color-Favored Percolation in Diluted Lattices," Future Internet, MDPI, vol. 12(8), pages 1-12, August.
    11. Ma, Xiangyu & Zhou, Huijie & Li, Zhiyi, 2021. "On the resilience of modern power systems: A complex network perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    12. Wu, Jiajing & You, Wei & Wu, Taocheng & Xia, Yongxiang, 2018. "Abnormal phenomenon in robustness of complex networks with heterogeneous node functions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 506(C), pages 451-461.
    13. Li, Wenyuan & Lin, Yongjing & Liu, Ying, 2007. "The structure of weighted small-world networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 376(C), pages 708-718.
    14. Ji, Junzhong & Song, Xiangjing & Liu, Chunnian & Zhang, Xiuzhen, 2013. "Ant colony clustering with fitness perception and pheromone diffusion for community detection in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(15), pages 3260-3272.
    15. David L. Alderson, 2008. "OR FORUM---Catching the “Network Science” Bug: Insight and Opportunity for the Operations Researcher," Operations Research, INFORMS, vol. 56(5), pages 1047-1065, October.
    16. Havlin, Shlomo & Stanley, H. Eugene & Bashan, Amir & Gao, Jianxi & Kenett, Dror Y., 2015. "Percolation of interdependent network of networks," Chaos, Solitons & Fractals, Elsevier, vol. 72(C), pages 4-19.
    17. Kizhakkedath, A. & Tai, K., 2021. "Vulnerability analysis of critical infrastructure network," International Journal of Critical Infrastructure Protection, Elsevier, vol. 35(C).
    18. Peng, Xingzhao & Yao, Hong & Du, Jun & Wang, Zhe & Ding, Chao, 2015. "Invulnerability of scale-free network against critical node failures based on a renewed cascading failure model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 421(C), pages 69-77.
    19. Chaoqi, Fu & Ying, Wang & Xiaoyang, Wang & Yangjun, Gao, 2018. "Multi-node attack strategy of complex networks due to cascading breakdown," Chaos, Solitons & Fractals, Elsevier, vol. 106(C), pages 61-66.
    20. Ma, A. & Mondragón, R.J., 2012. "Evaluation of network robustness using a node tearing algorithm," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(24), pages 6674-6681.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ijocip:v:41:y:2023:i:c:s1874548223000136. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/international-journal-of-critical-infrastructure-protection .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.