IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v506y2018icp755-766.html
   My bibliography  Save this article

Investigation on structural and spatial characteristics of taxi trip trajectory network in Xi’an, China

Author

Listed:
  • Yang, Yu
  • He, Ze
  • Song, Zouying
  • Fu, Xin
  • Wang, Jianwei

Abstract

An urban taxi transport network provides convenience for urban residents, and is also an important part of interconnecting suburbs and inner cities. Based on the GPS trajectory data of 14, 139 taxis, a kind of urban trip complex network was constructed. The clustering coefficient, average shortest path, vertex intensity, network density, K-core and other indexes that reflect the complex network characteristics of the taxis were studied, and the topological properties and geographical characteristics were analyzed. Xi’an’s taxi transport network has small-world characteristics and group characteristics, and that the average taxi trip is mainly 5.756 km. Distribution of vertex intensity in the traffic zones (minimum spatial analysis unit of transport network study) of the taxi network is uneven, which presents “fewer vertexes in large zones but more in the small ones, ” characteristic. The traffic zones with high cohesion are shaped as British Union Jack. Obviously, the research results indicate the interaction relationship between the topology structure and spatial differentiation of taxi trip trajectory network, and reveals urban resident activities’ spatial characteristics, movement rules and the mutual influence of urban functions’ spatial layout and resident activities, which may serve as references for those trying to optimize the taxi transport network and taxi operation management.

Suggested Citation

  • Yang, Yu & He, Ze & Song, Zouying & Fu, Xin & Wang, Jianwei, 2018. "Investigation on structural and spatial characteristics of taxi trip trajectory network in Xi’an, China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 506(C), pages 755-766.
  • Handle: RePEc:eee:phsmap:v:506:y:2018:i:c:p:755-766
    DOI: 10.1016/j.physa.2018.04.096
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437118305247
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2018.04.096?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jianjun Qin & Maohui Zheng, 2017. "New York city taxi trips: Dynamic networks following inconsistent power law," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 28(07), pages 1-19, July.
    2. Nie, Tingyuan & Guo, Zheng & Zhao, Kun & Lu, Zhe-Ming, 2016. "Using mapping entropy to identify node centrality in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 453(C), pages 290-297.
    3. Angeloudis, Panagiotis & Fisk, David, 2006. "Large subway systems as complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 367(C), pages 553-558.
    4. Bellingeri, Michele & Cassi, Davide & Vincenzi, Simone, 2014. "Efficiency of attack strategies on complex model and real-world networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 414(C), pages 174-180.
    5. Sun, Daniel (Jian) & Guan, Shituo, 2016. "Measuring vulnerability of urban metro network from line operation perspective," Transportation Research Part A: Policy and Practice, Elsevier, vol. 94(C), pages 348-359.
    6. Christensen, Claire & Albert, István & Grenfell, Bryan & Albert, Réka, 2010. "Disease dynamics in a dynamic social network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(13), pages 2663-2674.
    7. Abril, M. & Barber, F. & Ingolotti, L. & Salido, M.A. & Tormos, P. & Lova, A., 2008. "An assessment of railway capacity," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 44(5), pages 774-806, September.
    8. J. Jiménez-Perálvarez & C. Irigaray & R. El Hamdouni & J. Chacón, 2009. "Building models for automatic landslide-susceptibility analysis, mapping and validation in ArcGIS," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 50(3), pages 571-590, September.
    9. Barabási, Albert-László & Albert, Réka & Jeong, Hawoong, 1999. "Mean-field theory for scale-free random networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 272(1), pages 173-187.
    10. Nie, Tingyuan & Guo, Zheng & Zhao, Kun & Lu, Zhe-Ming, 2015. "New attack strategies for complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 424(C), pages 248-253.
    11. Seaton, Katherine A. & Hackett, Lisa M., 2004. "Stations, trains and small-world networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 339(3), pages 635-644.
    12. Bellingeri, Michele & Cassi, Davide, 2018. "Robustness of weighted networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 489(C), pages 47-55.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lyu, Tao & Wang, Yuanqing & Ji, Shujuan & Feng, Tao & Wu, Zhouhao, 2023. "A multiscale spatial analysis of taxi ridership," Journal of Transport Geography, Elsevier, vol. 113(C).
    2. Peng, Peng & Yang, Yu & Cheng, Shifen & Lu, Feng & Yuan, Zimu, 2019. "Hub-and-spoke structure: Characterizing the global crude oil transport network with mass vessel trajectories," Energy, Elsevier, vol. 168(C), pages 966-974.
    3. Xu Li & Bin Lv & Binke Lang & Qixiang Chen, 2022. "Exploring the Cascading Failure in Taxi Transportation Networks," Sustainability, MDPI, vol. 14(20), pages 1-14, October.
    4. Jungyeol Hong & Reuben Tamakloe & Soobeom Lee & Dongjoo Park, 2019. "Exploring the Topological Characteristics of Complex Public Transportation Networks: Focus on Variations in Both Single and Integrated Systems in the Seoul Metropolitan Area," Sustainability, MDPI, vol. 11(19), pages 1-26, September.
    5. Yang Yang & Zhenzhou Yuan & Xin Fu & Yinhai Wang & Dongye Sun, 2019. "Optimization Model of Taxi Fleet Size Based on GPS Tracking Data," Sustainability, MDPI, vol. 11(3), pages 1-19, January.
    6. Li, Ze-Tao & Nie, Wei-Peng & Cai, Shi-Min & Zhao, Zhi-Dan & Zhou, Tao, 2023. "Exploring the topological characteristics of urban trip networks based on taxi trajectory data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 609(C).
    7. Hu, Beibei & Xia, Xuanxuan & Sun, Huijun & Dong, Xianlei, 2019. "Understanding the imbalance of the taxi market: From the high-quality customer’s perspective," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 535(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jisha Mariyam John & Michele Bellingeri & Divya Sindhu Lekha & Davide Cassi & Roberto Alfieri, 2024. "Robustness of Real-World Networks after Weight Thresholding with Strong Link Removal," Mathematics, MDPI, vol. 12(10), pages 1-16, May.
    2. Nie, Tingyuan & Fan, Bo & Wang, Zhenhao, 2022. "Complexity and robustness of weighted circuit network of placement," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 598(C).
    3. P.B., Divya & Lekha, Divya Sindhu & Johnson, T.P. & Balakrishnan, Kannan, 2022. "Vulnerability of link-weighted complex networks in central attacks and fallback strategy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 590(C).
    4. Haonan Ye & Xiao Luo, 2021. "Cascading Failure Analysis on Shanghai Metro Networks: An Improved Coupled Map Lattices Model Based on Graph Attention Networks," IJERPH, MDPI, vol. 19(1), pages 1-17, December.
    5. Lekha, Divya Sindhu & Balakrishnan, Kannan, 2020. "Central attacks in complex networks: A revisit with new fallback strategy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 549(C).
    6. Bellingeri, M. & Bevacqua, D. & Scotognella, F. & LU, Zhe-Ming & Cassi, D., 2018. "Efficacy of local attack strategies on the Beijing road complex weighted network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 510(C), pages 316-328.
    7. Jisha Mariyam John & Michele Bellingeri & Divya Sindhu Lekha & Davide Cassi & Roberto Alfieri, 2023. "Effect of Weight Thresholding on the Robustness of Real-World Complex Networks to Central Node Attacks," Mathematics, MDPI, vol. 11(16), pages 1-12, August.
    8. Noguchi, Hiroki & Fuse, Masaaki, 2020. "Rethinking critical node problem for railway networks from the perspective of turn-back operation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 558(C).
    9. Xuelei Meng & Yahui Wang & Limin Jia & Lei Li, 2020. "Reliability Optimization of a Railway Network," Sustainability, MDPI, vol. 12(23), pages 1-27, November.
    10. Qian Ye & Hyun Kim, 2019. "Assessing network vulnerability of heavy rail systems with the impact of partial node failures," Transportation, Springer, vol. 46(5), pages 1591-1614, October.
    11. Moore, Jack Murdoch & Small, Michael & Yan, Gang, 2021. "Inclusivity enhances robustness and efficiency of social networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 563(C).
    12. Yue Xiao & Xiaojun Zhang, 2024. "Degree Distribution of Evolving Network with Node Preference Deletion," Mathematics, MDPI, vol. 12(23), pages 1-14, December.
    13. Yi Shen & Gang Ren & Bin Ran, 2021. "Cascading failure analysis and robustness optimization of metro networks based on coupled map lattices: a case study of Nanjing, China," Transportation, Springer, vol. 48(2), pages 537-553, April.
    14. Kashin Sugishita & Yasuo Asakura, 2021. "Vulnerability studies in the fields of transportation and complex networks: a citation network analysis," Public Transport, Springer, vol. 13(1), pages 1-34, March.
    15. Du, Zhouyang & Tang, Jinjun & Qi, Yong & Wang, Yiwei & Han, Chunyang & Yang, Yifan, 2020. "Identifying critical nodes in metro network considering topological potential: A case study in Shenzhen city—China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 539(C).
    16. Xu, Chen & Xu, Xueguo, 2024. "A two-stage resilience promotion approach for urban rail transit networks based on topology enhancement and recovery optimization," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 635(C).
    17. Pan, Shouzheng & Yan, Hai & He, Jia & He, Zhengbing, 2021. "Vulnerability and resilience of transportation systems: A recent literature review," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 581(C).
    18. Liu, Xiaolei & Lei, Zengxiang & Duan, Zhengyu, 2024. "Assessing metro network vulnerability with turn-back operations: A Monte Carlo method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 646(C).
    19. Lin Zhang & Jian Lu & Bai-bai Fu & Shu-bin Li, 2018. "A Review and Prospect for the Complexity and Resilience of Urban Public Transit Network Based on Complex Network Theory," Complexity, Hindawi, vol. 2018, pages 1-36, December.
    20. Jing, Weiwei & Xu, Xiangdong & Pu, Yichao, 2020. "Route redundancy-based approach to identify the critical stations in metro networks: A mean-excess probability measure," Reliability Engineering and System Safety, Elsevier, vol. 204(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:506:y:2018:i:c:p:755-766. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.