IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v506y2018icp156-169.html
   My bibliography  Save this article

Comparative analysis of grey detrended fluctuation analysis methods based on empirical research on China’s interest rate market

Author

Listed:
  • Cao, Guangxi
  • Jiang, Min
  • He, LingYun

Abstract

This study empirically compares the development of China’s interest rate market in the past decade. The yield of Shibor market from 2006 to 2016 showed anti-persistence, and the later five-year trend was stronger than that in the previous half period, indicating a significantly growing trend of China’s interest rate market. We perform a comparative analysis of detrended fluctuation analysis (DFA), detrending moving average (DMA) algorithm, and the maximum overlap wavelet transform (DFA-MODWT) using grey and original sequences. The autoregressive integrated moving average model is adopted to generate set-point H sequences. Results illustrated that 1) for original sequences, both the DFA-MODWT and DMA (θ=0.5) shows outstanding performances when the set Hurst exponents are 0.6 and 0.7 and 0.8 and 0.9, respectively. 2) For grey sequences, G-DFA performs best among the three methods, followed by G-DMA and G-DFA-MODWT. 3) The long-range correlation of the original sequences is slightly lower than the set values. On the contrary, the long-range correlation of grey sequences is much higher than the set values. Thus, the grey sequence exerts a strong aggregation effect as it can accumulate the trend of the sequence. Our results show that the grey sequence can determine the regular pattern from the messy sequence. However, grey sequences tend to be overly analyzed and misleading when large volumes of data are involved. Empirical studies confirm that China’s interest rate market remains an inefficient market.

Suggested Citation

  • Cao, Guangxi & Jiang, Min & He, LingYun, 2018. "Comparative analysis of grey detrended fluctuation analysis methods based on empirical research on China’s interest rate market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 506(C), pages 156-169.
  • Handle: RePEc:eee:phsmap:v:506:y:2018:i:c:p:156-169
    DOI: 10.1016/j.physa.2018.04.052
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437118304679
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2018.04.052?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Henry, Guillermo & Rodriguez, Daniela, 2016. "On the instability of two entropic dynamical models," Chaos, Solitons & Fractals, Elsevier, vol. 91(C), pages 604-609.
    2. Yong Luo & Jie Xiong & Lie Gang Dong & Yong Tang, 2015. "Statistical correlation properties of the SHIBOR interbank lending market," China Finance Review International, Emerald Group Publishing Limited, vol. 5(2), pages 91-102, May.
    3. He, Ling-Yun & Chen, Shu-Peng, 2011. "A new approach to quantify power-law cross-correlation and its application to commodity markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(21), pages 3806-3814.
    4. McCulloch, James, 2012. "Fractal market time," Journal of Empirical Finance, Elsevier, vol. 19(5), pages 686-701.
    5. Cao, Guangxi & Xu, Wei, 2016. "Nonlinear structure analysis of carbon and energy markets with MFDCCA based on maximum overlap wavelet transform," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 444(C), pages 505-523.
    6. Qishui Chi & Shiwen Fu, 2016. "The Impact of the Interest Rate Liberalization on Both Banks and Small Firms: Evidence from China," Research in World Economy, Research in World Economy, Sciedu Press, vol. 7(2), pages 26-33, December.
    7. He, Ling-Yun & Chen, Shu-Peng, 2010. "Are crude oil markets multifractal? Evidence from MF-DFA and MF-SSA perspectives," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(16), pages 3218-3229.
    8. Kantelhardt, Jan W. & Zschiegner, Stephan A. & Koscielny-Bunde, Eva & Havlin, Shlomo & Bunde, Armin & Stanley, H.Eugene, 2002. "Multifractal detrended fluctuation analysis of nonstationary time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 316(1), pages 87-114.
    9. Duan, Qihong & Wei, Ying & Chen, Zhiping, 2014. "Relationship between the benchmark interest rate and a macroeconomic indicator," Economic Modelling, Elsevier, vol. 38(C), pages 220-226.
    10. Eugene F. Fama, 1963. "Mandelbrot and the Stable Paretian Hypothesis," The Journal of Business, University of Chicago Press, vol. 36, pages 420-420.
    11. Lux, Thomas & Alfarano, Simone, 2016. "Financial power laws: Empirical evidence, models, and mechanisms," Chaos, Solitons & Fractals, Elsevier, vol. 88(C), pages 3-18.
    12. Gu, Rongbao & Chen, Xi & Li, Xinjie, 2014. "Chaos recognition and fractal analysis in the term structure of Shanghai Interbank Offered Rate," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 412(C), pages 101-112.
    13. Zebende, G.F. & da Silva, M.F. & Machado Filho, A., 2013. "DCCA cross-correlation coefficient differentiation: Theoretical and practical approaches," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(8), pages 1756-1761.
    14. He, Ling-Yun & Chen, Shu-Peng, 2011. "Multifractal Detrended Cross-Correlation Analysis of agricultural futures markets," Chaos, Solitons & Fractals, Elsevier, vol. 44(6), pages 355-361.
    15. Cao, Guangxi & Cao, Jie & Xu, Longbing, 2013. "Asymmetric multifractal scaling behavior in the Chinese stock market: Based on asymmetric MF-DFA," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(4), pages 797-807.
    16. Dariusz Grech & Zygmunt Mazur, 2012. "On the scaling ranges of detrended fluctuation analysis for long-memory correlated short series of data," Papers 1206.1007, arXiv.org.
    17. James McCulloch, 2012. "Fractal Market Time," Research Paper Series 311, Quantitative Finance Research Centre, University of Technology, Sydney.
    18. Gao-Feng Gu & Wei-Xing Zhou, 2010. "Detrending moving average algorithm for multifractals," Papers 1005.0877, arXiv.org, revised Jun 2010.
    19. Ying-Hui Shao & Gao Feng Gu & Zhi-Qiang Jiang & Wei-Xing Zhou & Didier Sornette, 2012. "Comparing the performance of FA, DFA and DMA using different synthetic long-range correlated time series," Papers 1208.4158, arXiv.org.
    20. Dufour, Jean-Marie & Kurz-Kim, Jeong-Ryeol & Palm, Franz C., 2010. "Editorial introduction: Heavy tails and stable Paretian distributions in empirical finance: A volume honoring Benoît B. Mandelbrot," Journal of Empirical Finance, Elsevier, vol. 17(2), pages 177-179, March.
    21. Paolella, Marc S., 2017. "Asymmetric stable Paretian distribution testing," Econometrics and Statistics, Elsevier, vol. 1(C), pages 19-39.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cao, Guangxi & Han, Yan & Li, Qingchen & Xu, Wei, 2017. "Asymmetric MF-DCCA method based on risk conduction and its application in the Chinese and foreign stock markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 468(C), pages 119-130.
    2. Kristoufek, Ladislav, 2014. "Detrending moving-average cross-correlation coefficient: Measuring cross-correlations between non-stationary series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 406(C), pages 169-175.
    3. Cao, Guangxi & Zhang, Minjia, 2015. "Extreme values in the Chinese and American stock markets based on detrended fluctuation analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 436(C), pages 25-35.
    4. Zhang, Xin & Zhu, Yingming & Yang, Liansheng, 2018. "Multifractal detrended cross-correlations between Chinese stock market and three stock markets in The Belt and Road Initiative," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 503(C), pages 105-115.
    5. Zhuang, Xiaoyang & Wei, Yu & Ma, Feng, 2015. "Multifractality, efficiency analysis of Chinese stock market and its cross-correlation with WTI crude oil price," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 430(C), pages 101-113.
    6. Manimaran, P. & Narayana, A.C., 2018. "Multifractal detrended cross-correlation analysis on air pollutants of University of Hyderabad Campus, India," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 502(C), pages 228-235.
    7. Dutta, Srimonti & Ghosh, Dipak & Samanta, Shukla, 2014. "Multifractal detrended cross-correlation analysis of gold price and SENSEX," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 413(C), pages 195-204.
    8. Li, Jianxuan & Shi, Yingying & Cao, Guangxi, 2018. "Topology structure based on detrended cross-correlation coefficient of exchange rate network of the belt and road countries," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 1140-1151.
    9. Shen, Na & Chen, Jiayi, 2023. "Asymmetric multifractal spectrum distribution based on detrending moving average cross-correlation analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 615(C).
    10. He, Ling-Yun & Chen, Shu-Peng, 2011. "A new approach to quantify power-law cross-correlation and its application to commodity markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(21), pages 3806-3814.
    11. Kristoufek, Ladislav, 2015. "Finite sample properties of power-law cross-correlations estimators," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 419(C), pages 513-525.
    12. repec:arx:papers:1501.02947 is not listed on IDEAS
    13. Kristoufek, Ladislav, 2015. "Can the bivariate Hurst exponent be higher than an average of the separate Hurst exponents?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 431(C), pages 124-127.
    14. Kristoufek, Ladislav, 2014. "Measuring correlations between non-stationary series with DCCA coefficient," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 402(C), pages 291-298.
    15. Ji, Qiangbiao & Zhang, Xin & Zhu, Yingming, 2020. "Multifractal analysis of the impact of US–China trade friction on US and China soy futures markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 542(C).
    16. Dutta, Srimonti & Ghosh, Dipak & Chatterjee, Sucharita, 2016. "Multifractal detrended Cross Correlation Analysis of Foreign Exchange and SENSEX fluctuation in Indian perspective," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 463(C), pages 188-201.
    17. Ruan, Qingsong & Zhang, Manqian & Lv, Dayong & Yang, Haiquan, 2018. "SAD and stock returns revisited: Nonlinear analysis based on MF-DCCA and Granger test," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 1009-1022.
    18. Fernández-Martínez, M. & Sánchez-Granero, M.A. & Casado Belmonte, M.P. & Trinidad Segovia, J.E., 2020. "A note on power-law cross-correlated processes," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
    19. Cao, Guangxi & Xu, Longbing & Cao, Jie, 2012. "Multifractal detrended cross-correlations between the Chinese exchange market and stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(20), pages 4855-4866.
    20. Cao, Guangxi & Shi, Yingying, 2017. "Simulation analysis of multifractal detrended methods based on the ARFIMA process," Chaos, Solitons & Fractals, Elsevier, vol. 105(C), pages 235-243.
    21. Chen, Yuwen & Zheng, Tingting, 2017. "Asymmetric joint multifractal analysis in Chinese stock markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 471(C), pages 10-19.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:506:y:2018:i:c:p:156-169. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.