IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1206.1007.html
   My bibliography  Save this paper

On the scaling ranges of detrended fluctuation analysis for long-memory correlated short series of data

Author

Listed:
  • Dariusz Grech
  • Zygmunt Mazur

Abstract

We examine the scaling regime for the detrended fluctuation analysis (DFA) - the most popular method used to detect the presence of long memory in data and the fractal structure of time series. First, the scaling range for DFA is studied for uncorrelated data as a function of length $L$ of time series and regression line coefficient $R^2$ at various confidence levels. Next, an analysis of artificial short series with long memory is performed. In both cases the scaling range $\lambda$ is found to change linearly -- both with $L$ and $R^2$. We show how this dependence can be generalized to a simple unified model describing the relation $\lambda=\lambda(L, R^2, H)$ where $H$ ($1/2\leq H \leq 1$) stands for the Hurst exponent of long range autocorrelated data. Our findings should be useful in all applications of DFA technique, particularly for instantaneous (local) DFA where enormous number of short time series has to be examined at once, without possibility for preliminary check of the scaling range of each series separately.

Suggested Citation

  • Dariusz Grech & Zygmunt Mazur, 2012. "On the scaling ranges of detrended fluctuation analysis for long-memory correlated short series of data," Papers 1206.1007, arXiv.org.
  • Handle: RePEc:arx:papers:1206.1007
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1206.1007
    File Function: Latest version
    Download Restriction: no

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nurbanu Bursa & Hüseyin Tatlýdil, 2015. "Investigation of Credit Default Swaps using Detrended Fluctuation Analysis which is an Econophysical Technique," Eurasian Eononometrics, Statistics and Emprical Economics Journal, Eurasian Academy Of Sciences, vol. 2(2), pages 25-33, October.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1206.1007. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (arXiv administrators). General contact details of provider: http://arxiv.org/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.