IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v470y2017icp275-295.html
   My bibliography  Save this article

False Beliefs in Unreliable Knowledge Networks

Author

Listed:
  • Ioannidis, Evangelos
  • Varsakelis, Nikos
  • Antoniou, Ioannis

Abstract

The aims of this work are: (1) to extend knowledge dynamics analysis in order to assess the influence of false beliefs and unreliable communication channels, (2) to investigate the impact of selection rule-policy for knowledge acquisition, (3) to investigate the impact of targeted link attacks (“breaks” or “infections”) of certain “healthy” communication channels. We examine the knowledge dynamics analytically, as well as by simulations on both artificial and real organizational knowledge networks. The main findings are: (1) False beliefs have no significant influence on knowledge dynamics, while unreliable communication channels result in non-monotonic knowledge updates (“wild” knowledge fluctuations may appear) and in significant elongation of knowledge attainment. Moreover, false beliefs may emerge during knowledge evolution, due to the presence of unreliable communication channels, even if they were not present initially, (2) Changing the selection rule-policy, by raising the awareness of agents to avoid the selection of unreliable communication channels, results in monotonic knowledge upgrade and in faster knowledge attainment, (3) “Infecting” links is more harmful than “breaking” links, due to “wild” knowledge fluctuations and due to the elongation of knowledge attainment. Moreover, attacking even a “small” percentage of links (≤5%) with high knowledge transfer, may result in dramatic elongation of knowledge attainment (over 100%), as well as in delays of the onset of knowledge attainment. Hence, links of high knowledge transfer should be protected, because in Information Warfare and Disinformation, these links are the “best targets”.

Suggested Citation

  • Ioannidis, Evangelos & Varsakelis, Nikos & Antoniou, Ioannis, 2017. "False Beliefs in Unreliable Knowledge Networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 470(C), pages 275-295.
  • Handle: RePEc:eee:phsmap:v:470:y:2017:i:c:p:275-295
    DOI: 10.1016/j.physa.2016.11.070
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437116308767
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2016.11.070?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cowan, Robin & Jonard, Nicolas, 2004. "Network structure and the diffusion of knowledge," Journal of Economic Dynamics and Control, Elsevier, vol. 28(8), pages 1557-1575, June.
    2. Corey C. Phelps & Ralph Heidl & Anu Wadhwa, 2012. "Networks, knowledge, and knowledge networks: A critical review and research agenda," Post-Print hal-00715591, HAL.
    3. Morten T. Hansen, 2002. "Knowledge Networks: Explaining Effective Knowledge Sharing in Multiunit Companies," Organization Science, INFORMS, vol. 13(3), pages 232-248, June.
    4. Kurmyshev, Evguenii & Juárez, Héctor A. & González-Silva, Ricardo A., 2011. "Dynamics of bounded confidence opinion in heterogeneous social networks: Concord against partial antagonism," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(16), pages 2945-2955.
    5. Elisa Giuliani, 2007. "The selective nature of knowledge networks in clusters: evidence from the wine industry," Journal of Economic Geography, Oxford University Press, vol. 7(2), pages 139-168, March.
    6. Cowan, R. & Jonard, N., 2003. "The dynamics of collective invention," Journal of Economic Behavior & Organization, Elsevier, vol. 52(4), pages 513-532, December.
    7. Jackie Krafft & Francesco Quatraro & Pier Paolo Saviotti, 2011. "The knowledge-base evolution in biotechnology: a social network analysis," Economics of Innovation and New Technology, Taylor & Francis Journals, vol. 20(5), pages 445-475.
    8. Lori Rosenkopf & Giovanna Padula, 2008. "Investigating the Microstructure of Network Evolution: Alliance Formation in the Mobile Communications Industry," Organization Science, INFORMS, vol. 19(5), pages 669-687, October.
    9. Hausmann, Ricardo & Hidalgo, Cesar, 2014. "The Atlas of Economic Complexity: Mapping Paths to Prosperity," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262525429, December.
    10. Cohen, Wesley M & Levinthal, Daniel A, 1989. "Innovation and Learning: The Two Faces of R&D," Economic Journal, Royal Economic Society, vol. 99(397), pages 569-596, September.
    11. Alan Kirman, 1997. "The economy as an evolving network," Journal of Evolutionary Economics, Springer, vol. 7(4), pages 339-353.
    12. Ikujiro Nonaka, 1994. "A Dynamic Theory of Organizational Knowledge Creation," Organization Science, INFORMS, vol. 5(1), pages 14-37, February.
    13. Lin, Min & Li, Nan, 2010. "Scale-free network provides an optimal pattern for knowledge transfer," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(3), pages 473-480.
    14. Zhuang, Enyu & Chen, Guanrong & Feng, Gang, 2011. "A network model of knowledge accumulation through diffusion and upgrade," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(13), pages 2582-2592.
    15. Argote, Linda & Ingram, Paul, 2000. "Knowledge Transfer: A Basis for Competitive Advantage in Firms," Organizational Behavior and Human Decision Processes, Elsevier, vol. 82(1), pages 150-169, May.
    16. Michael Fritsch & Martina Kauffeld-Monz, 2010. "The impact of network structure on knowledge transfer: an application of social network analysis in the context of regional innovation networks," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 44(1), pages 21-38, February.
    17. Wang, Jiang-Pan & Guo, Qiang & Yang, Guang-Yong & Liu, Jian-Guo, 2015. "Improved knowledge diffusion model based on the collaboration hypernetwork," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 428(C), pages 250-256.
    18. Yang, Guang-Yong & Hu, Zhao-Long & Liu, Jian-Guo, 2015. "Knowledge diffusion in the collaboration hypernetwork," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 419(C), pages 429-436.
    19. Kelvin Chan & Jay Liebowitz, 2006. "The synergy of social network analysis and knowledge mapping: a case study," International Journal of Management and Decision Making, Inderscience Enterprises Ltd, vol. 7(1), pages 19-35.
    20. Bruce Kogut, 2000. "The network as knowledge: generative rules and the emergence of structure," Strategic Management Journal, Wiley Blackwell, vol. 21(3), pages 405-425, March.
    21. Manuel Becerra & Randi Lunnan & Lars Huemer, 2008. "Trustworthiness, Risk, and the Transfer of Tacit and Explicit Knowledge Between Alliance Partners," Journal of Management Studies, Wiley Blackwell, vol. 45(4), pages 691-713, June.
    22. M. Patrizia Vittoria & Giuseppe Lubrano Lavadera, 2014. "Knowledge networks and dynamic capabilities as the new regional policy milieu. A social network analysis of the Campania biotechnology community in southern Italy," Entrepreneurship & Regional Development, Taylor & Francis Journals, vol. 26(7-8), pages 594-618, October.
    23. Daniel Z. Levin & Rob Cross, 2004. "The Strength of Weak Ties You Can Trust: The Mediating Role of Trust in Effective Knowledge Transfer," Management Science, INFORMS, vol. 50(11), pages 1477-1490, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Evangelos Ioannidis & Nikos Varsakelis & Ioannis Antoniou, 2020. "Promoters versus Adversaries of Change: Agent-Based Modeling of Organizational Conflict in Co-Evolving Networks," Mathematics, MDPI, vol. 8(12), pages 1-25, December.
    2. Li, Yang & Sun, Hao & Xiong, Wanda & Xu, Genjiu, 2021. "Belief model of complex contagions on random networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 567(C).
    3. Evangelos Ioannidis & Nikos Varsakelis & Ioannis Antoniou, 2021. "Intelligent Agents in Co-Evolving Knowledge Networks," Mathematics, MDPI, vol. 9(1), pages 1-17, January.
    4. Ioannidis, Evangelos & Varsakelis, Nikos & Antoniou, Ioannis, 2018. "Experts in Knowledge Networks: Central Positioning and Intelligent Selections," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 890-905.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ioannidis, Evangelos & Varsakelis, Nikos & Antoniou, Ioannis, 2018. "Experts in Knowledge Networks: Central Positioning and Intelligent Selections," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 890-905.
    2. Evangelos Ioannidis & Nikos Varsakelis & Ioannis Antoniou, 2021. "Intelligent Agents in Co-Evolving Knowledge Networks," Mathematics, MDPI, vol. 9(1), pages 1-17, January.
    3. Giuseppe Calignano & Rune Dahl Fitjar, 2017. "Strengthening relationships in clusters: How effective is an indirect policy measure carried out in a peripheral technology district?," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 59(1), pages 139-169, July.
    4. Zhang, Haihong & Wu, Wenqing & Zhao, Liming, 2016. "A study of knowledge supernetworks and network robustness in different business incubators," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 447(C), pages 545-560.
    5. Bogner, Kristina, 2019. "Knowledge networks in the German bioeconomy: Network structure of publicly funded R&D networks," Hohenheim Discussion Papers in Business, Economics and Social Sciences 03-2019, University of Hohenheim, Faculty of Business, Economics and Social Sciences.
    6. Linda Argote & Ella Miron-Spektor, 2011. "Organizational Learning: From Experience to Knowledge," Organization Science, INFORMS, vol. 22(5), pages 1123-1137, October.
    7. Zhao, Liming & Zhang, Haihong & Wu, Wenqing, 2017. "Knowledge service decision making in business incubators based on the supernetwork model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 479(C), pages 249-264.
    8. Yue, Zenghui & Xu, Haiyun & Yuan, Guoting & Pang, Hongshen, 2019. "Modeling study of knowledge diffusion in scientific collaboration networks based on differential dynamics: A case study in graphene field," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 524(C), pages 375-391.
    9. Zhang, JingJing & Yan, Yan & Guan, JianCheng, 2019. "Recombinant distance, network governance and recombinant innovation," Technological Forecasting and Social Change, Elsevier, vol. 143(C), pages 260-272.
    10. Radaelli, Giovanni & Lettieri, Emanuele & Frattini, Federico & Luzzini, Davide & Boaretto, Andrea, 2017. "Users' search mechanisms and risks of inappropriateness in healthcare innovations: The role of literacy and trust in professional contexts," Technological Forecasting and Social Change, Elsevier, vol. 120(C), pages 240-251.
    11. Liming Zhao & Haihong Zhang & Wenqing Wu, 2019. "Cooperative knowledge creation in an uncertain network environment based on a dynamic knowledge supernetwork," Scientometrics, Springer;Akadémiai Kiadó, vol. 119(2), pages 657-685, May.
    12. Wang, Haiying & Moore, Jack Murdoch & Wang, Jun & Small, Michael, 2021. "The distinct roles of initial transmission and retransmission in the persistence of knowledge in complex networks," Applied Mathematics and Computation, Elsevier, vol. 392(C).
    13. Lorenzo Zirulia, 2023. "Path dependence in evolving R&D networks," Journal of Evolutionary Economics, Springer, vol. 33(1), pages 149-177, January.
    14. Namgyoo Park & John Mezias & Jinju Lee & Jae-Hoon Han, 2014. "Reverse knowledge diffusion: Competitive dynamics and the knowledge seeking behavior of Korean high-tech firms," Asia Pacific Journal of Management, Springer, vol. 31(2), pages 355-375, June.
    15. Haider, Sajjad & Mariotti, Francesca, 2016. "The orchestration of alliance portfolios: The role of alliance portfolio capability," Scandinavian Journal of Management, Elsevier, vol. 32(3), pages 127-141.
    16. Vanhaverbeke, W.P.M. & Beerkens, B.E. & Duysters, G.M., 2003. "Explorative and exploitative learning strategies in technology-based alliance networks," Working Papers 03.22, Eindhoven Center for Innovation Studies.
    17. Robin Cowan & Nicolas Jonard, 2007. "Structural holes, innovation and the distribution of ideas," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 2(2), pages 93-110, December.
    18. Quentin Plantec & Pascal Le Masson & Benoît Weil, 2021. "Impact of knowledge search practices on the originality of inventions: A study in the oil & gas industry through dynamic patent analysis," Post-Print halshs-03203124, HAL.
    19. Abbasiharofteh, Milad & Kogler, Dieter F. & Lengyel, Balázs, 2023. "Atypical combinations of technologies in regional co-inventor networks," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 52(10), pages 1-1.
    20. Mario V. Tomasello & Mauro Napoletano & Antonios Garas & Frank Schweitzer, 2017. "The rise and fall of R&D networks," Industrial and Corporate Change, Oxford University Press and the Associazione ICC, vol. 26(4), pages 617-646.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:470:y:2017:i:c:p:275-295. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.