IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v391y2012i22p5453-5464.html
   My bibliography  Save this article

Determining an influencing area affecting walking speed on footpath: A case study of a footpath in CBD Bangkok, Thailand

Author

Listed:
  • Tipakornkiat, Chalat
  • Limanond, Thirayoot
  • Kim, Hyunmyung

Abstract

Intuitively, the crowd density in front of a pedestrian will affect his walking speed along a footpath. Nevertheless, the size of the influencing area affecting walking speed has rarely been scrutinized in the past. This study attempts to determine the distance in front of pedestrians that principally affects their walking speed under normal conditions, using a case study of a footpath in Bangkok. We recorded pedestrian activities along a test section of 20 m, with an effective walking width of 2.45 m in the morning and at noon. The morning dataset was extracted for analyzing various influencing distances, ranging from 1 to 20 m in front of the pedestrian. The bi-directional walking speed–pedestrian density models were developed, for each tested distance, using linear regression analysis. It was found that an influencing length in the range of 5–8 m yields the highest correlation coefficients. In the case of high density conditions, the walking speed of the equally-split flow (50:50) was found to be higher than other proportional flow analyzed. The finding has useful implications on the improvement of the walking simulations in mesoscopic models.

Suggested Citation

  • Tipakornkiat, Chalat & Limanond, Thirayoot & Kim, Hyunmyung, 2012. "Determining an influencing area affecting walking speed on footpath: A case study of a footpath in CBD Bangkok, Thailand," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(22), pages 5453-5464.
  • Handle: RePEc:eee:phsmap:v:391:y:2012:i:22:p:5453-5464
    DOI: 10.1016/j.physa.2012.06.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437112004888
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lam, William H. K. & Lee, Jodie Y. S. & Chan, K. S. & Goh, P. K., 2003. "A generalised function for modeling bi-directional flow effects on indoor walkways in Hong Kong," Transportation Research Part A: Policy and Practice, Elsevier, vol. 37(9), pages 789-810, November.
    2. Blue, Victor J. & Adler, Jeffrey L., 2001. "Cellular automata microsimulation for modeling bi-directional pedestrian walkways," Transportation Research Part B: Methodological, Elsevier, vol. 35(3), pages 293-312, March.
    3. Seyfried, Armin & Steffen, Bernhard & Lippert, Thomas, 2006. "Basics of modelling the pedestrian flow," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 368(1), pages 232-238.
    4. Isobe, Motoshige & Adachi, Taku & Nagatani, Takashi, 2004. "Experiment and simulation of pedestrian counter flow," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 336(3), pages 638-650.
    5. Yuan, Weifeng & Tan, Kang Hai, 2007. "An evacuation model using cellular automata," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 384(2), pages 549-566.
    6. Jian, Li & Lizhong, Yang & Daoliang, Zhao, 2005. "Simulation of bi-direction pedestrian movement in corridor," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 354(C), pages 619-628.
    7. Li, Xiaomeng & Chen, Tao & Pan, Lili & Shen, Shifei & Yuan, Hongyong, 2008. "Lattice gas simulation and experiment study of evacuation dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(22), pages 5457-5465.
    8. O’Connor, A. & Zerger, A. & Itami, B., 2005. "Geo-temporal tracking and analysis of tourist movement," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 69(1), pages 135-150.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bosina, Ernst & Weidmann, Ulrich, 2017. "Estimating pedestrian speed using aggregated literature data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 468(C), pages 1-29.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:391:y:2012:i:22:p:5453-5464. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.