IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v389y2010i4p815-824.html
   My bibliography  Save this article

Experiment and modeling of exit-selecting behaviors during a building evacuation

Author

Listed:
  • Fang, Zhiming
  • Song, Weiguo
  • Zhang, Jun
  • Wu, Hao

Abstract

The evacuation process in a teaching building with two neighboring exits is investigated by means of experiment and modeling. The basic parameters such as flow, density and velocity of pedestrians in the exit area are measured. The exit-selecting phenomenon in the experiment is analyzed, and it is found that pedestrians prefer selecting the closer exit even though the other exit is only a little far. In order to understand the phenomenon, we reproduce the experiment process with a modified biased random walk model, in which the preference of closer exit is achieved using the drift direction and the drift force. Our simulation results afford a calibrated value of the drift force, especially when it is 0.56, there is good agreement between the simulation results and the experimental results on the number of pedestrians selecting the closer exit, the average velocity through the exits, the cumulative distribution of the instantaneous velocity and the fundamental diagram of the flow through exits. According to the further simulation results, it is found that pedestrians tend to select the exit with shorter distance to them, especially when the people density is small or medium. But if the density is large enough, the flow rates of the two exits will become comparable because of the detour behaviors. It reflects the fact that a crowd of people may not be rational to optimize the usage of multi-exits, especially in an emergency.

Suggested Citation

  • Fang, Zhiming & Song, Weiguo & Zhang, Jun & Wu, Hao, 2010. "Experiment and modeling of exit-selecting behaviors during a building evacuation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(4), pages 815-824.
  • Handle: RePEc:eee:phsmap:v:389:y:2010:i:4:p:815-824
    DOI: 10.1016/j.physa.2009.10.019
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437109008693
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2009.10.019?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Jun & Song, Weiguo & Xu, Xuan, 2008. "Experiment and multi-grid modeling of evacuation from a classroom," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(23), pages 5901-5909.
    2. Nagatani, Takashi, 2002. "Dynamical transition in merging pedestrian flow without bottleneck," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 307(3), pages 505-515.
    3. Weng, W.G. & Pan, L.L. & Shen, S.F. & Yuan, H.Y., 2007. "Small-grid analysis of discrete model for evacuation from a hall," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 374(2), pages 821-826.
    4. Xu, X. & Song, W.G. & Zheng, H.Y., 2008. "Discretization effect in a multi-grid egress model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(22), pages 5567-5574.
    5. Nagai, Ryoichi & Fukamachi, Masahiro & Nagatani, Takashi, 2006. "Evacuation of crawlers and walkers from corridor through an exit," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 367(C), pages 449-460.
    6. Maniccam, S., 2005. "Effects of back step and update rule on congestion of mobile objects," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 346(3), pages 631-650.
    7. Nagai, Ryoichi & Nagatani, Takashi & Isobe, Motoshige & Adachi, Taku, 2004. "Effect of exit configuration on evacuation of a room without visibility," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 343(C), pages 712-724.
    8. Saegusa, Tatsuhiko & Mashiko, Takashi & Nagatani, Takashi, 2008. "Flow overshooting in crossing flow of lattice gas," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(16), pages 4119-4132.
    9. Song, Weiguo & Xu, Xuan & Wang, Bing-Hong & Ni, Shunjiang, 2006. "Simulation of evacuation processes using a multi-grid model for pedestrian dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 363(2), pages 492-500.
    10. Nagatani, Takashi & Nagai, Ryoichi, 2004. "Statistical characteristics of evacuation without visibility in random walk model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 341(C), pages 638-648.
    11. Fukamachi, Masahiro & Nagatani, Takashi, 2007. "Sidle effect on pedestrian counter flow," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 377(1), pages 269-278.
    12. Muramatsu, Masakuni & Irie, Tunemasa & Nagatani, Takashi, 1999. "Jamming transition in pedestrian counter flow," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 267(3), pages 487-498.
    13. Ito, Satoru & Nagatani, Takashi & Saegusa, Tatsuhiko, 2007. "Volatile jam and flow fluctuation in counter flow of slender particles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 373(C), pages 672-682.
    14. Tajima, Yusuke & Nagatani, Takashi, 2001. "Scaling behavior of crowd flow outside a hall," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 292(1), pages 545-554.
    15. Burstedde, C & Klauck, K & Schadschneider, A & Zittartz, J, 2001. "Simulation of pedestrian dynamics using a two-dimensional cellular automaton," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 295(3), pages 507-525.
    16. Isobe, Motoshige & Adachi, Taku & Nagatani, Takashi, 2004. "Experiment and simulation of pedestrian counter flow," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 336(3), pages 638-650.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cao, Shuchao & Song, Weiguo & Lv, Wei & Fang, Zhiming, 2015. "A multi-grid model for pedestrian evacuation in a room without visibility," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 436(C), pages 45-61.
    2. Tang, Tie-Qiao & Xie, Chuan-Zhi & Wang, Tao & Zhang, Jian, 2019. "Modeling and simulating the matching behavior of pedestrian flow at training school during the pickup period after class," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 521(C), pages 649-660.
    3. Mengting Liu & Wei Zhu & Yafei Wang & Jianchun Zheng, 2021. "Modeling and Simulation of Exit Selection Behavior in Pedestrian Evacuation Based on Information Perception and Transmission," Sustainability, MDPI, vol. 13(23), pages 1-17, November.
    4. Fang, Zhixiang & Zong, Xinlu & Li, Qingquan & Li, Qiuping & Xiong, Shengwu, 2011. "Hierarchical multi-objective evacuation routing in stadium using ant colony optimization approach," Journal of Transport Geography, Elsevier, vol. 19(3), pages 443-451.
    5. Chen, Anying & He, Jingtao & Liang, Manchun & Su, Guofeng, 2020. "Crowd response considering herd effect and exit familiarity under emergent occasions: A case study of an evacuation drill experiment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 556(C).
    6. Haghani, Milad & Sarvi, Majid, 2018. "Hypothetical bias and decision-rule effect in modelling discrete directional choices," Transportation Research Part A: Policy and Practice, Elsevier, vol. 116(C), pages 361-388.
    7. Shi, Xiaomeng & Xue, Shuqi & Shiwakoti, Nirajan & Li, Dawei & Ye, Zhirui, 2022. "Examining the effects of exit layout designs on children pedestrians’ exit choice," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 602(C).
    8. Fang, Zhi-Ming & Song, Wei-Guo & Liu, Xuan & Lv, Wei & Ma, Jian & Xiao, Xia, 2012. "A continuous distance model (CDM) for the single-file pedestrian movement considering step frequency and length," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(1), pages 307-316.
    9. Ding, Ning & Chen, Tao & Zhu, Yu & Lu, Yang, 2021. "State-of-the-art high-rise building emergency evacuation behavior," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 561(C).
    10. Milad Haghani & Majid Sarvi & Zahra Shahhoseini & Maik Boltes, 2016. "How Simple Hypothetical-Choice Experiments Can Be Utilized to Learn Humans’ Navigational Escape Decisions in Emergencies," PLOS ONE, Public Library of Science, vol. 11(11), pages 1-24, November.
    11. Li, Jun & Fu, Siyao & He, Haibo & Jia, Hongfei & Li, Yanzhong & Guo, Yi, 2015. "Simulating large-scale pedestrian movement using CA and event driven model: Methodology and case study," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 437(C), pages 304-321.
    12. Liu, Xiaodong & Song, Weiguo & Fu, Libi & Fang, Zhiming, 2016. "Experimental study of pedestrian inflow in a room with a separate entrance and exit," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 442(C), pages 224-238.
    13. Meiying Jiang & Qibing Jin & Lisheng Cheng, 2019. "Effects of Ticket-Checking Failure on Dynamics of Pedestrians at Multi-Exit Inspection Points with Various Layouts," IJERPH, MDPI, vol. 16(5), pages 1-16, March.
    14. Fang, Zhi-Ming & Lv, Wei & Jiang, Li-Xue & Xu, Qing-Feng & Song, Wei-Guo, 2016. "Modeling and assessment of civil aircraft evacuation based on finer-grid," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 448(C), pages 102-112.
    15. Ning Ding, 2020. "The effectiveness of evacuation signs in buildings based on eye tracking experiment," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 103(1), pages 1201-1218, August.
    16. Fu, Zhijian & Zhou, Xiaodong & Zhu, Kongjin & Chen, Yanqiu & Zhuang, Yifan & Hu, Yuqi & Yang, Lizhong & Chen, Changkun & Li, Jian, 2015. "A floor field cellular automaton for crowd evacuation considering different walking abilities," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 420(C), pages 294-303.
    17. Dirk Helbing & Pratik Mukerji, "undated". "Crowd Disasters as Systemic Failures: Analysis of the Love Parade Disaster," Working Papers ETH-RC-12-010, ETH Zurich, Chair of Systems Design.
    18. Haghani, Milad & Sarvi, Majid, 2019. "Laboratory experimentation and simulation of discrete direction choices: Investigating hypothetical bias, decision-rule effect and external validity based on aggregate prediction measures," Transportation Research Part A: Policy and Practice, Elsevier, vol. 130(C), pages 134-157.
    19. Haghani, Milad & Sarvi, Majid, 2017. "Stated and revealed exit choices of pedestrian crowd evacuees," Transportation Research Part B: Methodological, Elsevier, vol. 95(C), pages 238-259.
    20. Kaji, Masaru & Inohara, Takehiro, 2017. "Cellular automaton simulation of unidirectional pedestrians flow in a corridor to reproduce the unique velocity profile of Hagen–Poiseuille flow," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 467(C), pages 85-95.
    21. Haghani, Milad & Sarvi, Majid, 2018. "Crowd behaviour and motion: Empirical methods," Transportation Research Part B: Methodological, Elsevier, vol. 107(C), pages 253-294.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Xuan & Song, Weiguo & Zhang, Jun, 2009. "Extraction and quantitative analysis of microscopic evacuation characteristics based on digital image processing," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(13), pages 2717-2726.
    2. Lei, Wenjun & Li, Angui & Gao, Ran & Zhou, Ning & Mei, Sen & Tian, Zhenguo, 2012. "Experimental study and numerical simulation of evacuation from a dormitory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(21), pages 5189-5196.
    3. Fang, Zhi-Ming & Song, Wei-Guo & Liu, Xuan & Lv, Wei & Ma, Jian & Xiao, Xia, 2012. "A continuous distance model (CDM) for the single-file pedestrian movement considering step frequency and length," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(1), pages 307-316.
    4. Guo, Ren-Yong, 2014. "New insights into discretization effects in cellular automata models for pedestrian evacuation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 400(C), pages 1-11.
    5. Huang, Rong & Zhao, Xuan & Zhou, Chenyu & Kong, Lingchen & Liu, Chengqing & Yu, Qiang, 2022. "Static floor field construction and fine discrete cellular automaton model: Algorithms, simulations and insights," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 606(C).
    6. Cao, Shuchao & Song, Weiguo & Lv, Wei & Fang, Zhiming, 2015. "A multi-grid model for pedestrian evacuation in a room without visibility," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 436(C), pages 45-61.
    7. Zhang, Jun & Song, Weiguo & Xu, Xuan, 2008. "Experiment and multi-grid modeling of evacuation from a classroom," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(23), pages 5901-5909.
    8. Tang, Ming & Jia, Hongfei & Ran, Bin & Li, Jun, 2016. "Analysis of the pedestrian arching at bottleneck based on a bypassing behavior model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 453(C), pages 242-258.
    9. Li, Xingli & Guo, Fang & Kuang, Hua & Geng, Zhongfei & Fan, Yanhong, 2019. "An extended cost potential field cellular automaton model for pedestrian evacuation considering the restriction of visual field," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 515(C), pages 47-56.
    10. Guo, Ren-Yong & Huang, Hai-Jun & Wong, S.C., 2012. "Route choice in pedestrian evacuation under conditions of good and zero visibility: Experimental and simulation results," Transportation Research Part B: Methodological, Elsevier, vol. 46(6), pages 669-686.
    11. Song, Weiguo & Xu, Xuan & Wang, Bing-Hong & Ni, Shunjiang, 2006. "Simulation of evacuation processes using a multi-grid model for pedestrian dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 363(2), pages 492-500.
    12. Fang, Jun & Qin, Zheng & Hu, Hao & Xu, Zhaohui & Li, Huan, 2012. "The fundamental diagram of pedestrian model with slow reaction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(23), pages 6112-6120.
    13. Kaji, Masaru & Inohara, Takehiro, 2017. "Cellular automaton simulation of unidirectional pedestrians flow in a corridor to reproduce the unique velocity profile of Hagen–Poiseuille flow," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 467(C), pages 85-95.
    14. Fang, Zhi-Ming & Lv, Wei & Jiang, Li-Xue & Xu, Qing-Feng & Song, Wei-Guo, 2016. "Modeling and assessment of civil aircraft evacuation based on finer-grid," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 448(C), pages 102-112.
    15. Haghani, Milad, 2021. "The knowledge domain of crowd dynamics: Anatomy of the field, pioneering studies, temporal trends, influential entities and outside-domain impact," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 580(C).
    16. Shang, Hua-Yan & Huang, Hai-Jun & Zhang, Yi-Ming, 2015. "An extended mobile lattice gas model allowing pedestrian step size variable," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 424(C), pages 283-293.
    17. Li, Xingli & Guo, Fang & Kuang, Hua & Zhou, Huaguo, 2017. "Effect of psychological tension on pedestrian counter flow via an extended cost potential field cellular automaton model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 487(C), pages 47-57.
    18. Zhang, Xinwei & Zhang, Peihong & Zhong, Maohua, 2021. "A dual adaptive cellular automaton model based on a composite field and pedestrian heterogeneity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 583(C).
    19. Guo, Xiwei & Chen, Jianqiao & Zheng, Yaochen & Wei, Junhong, 2012. "A heterogeneous lattice gas model for simulating pedestrian evacuation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(3), pages 582-592.
    20. Liu, Shaobo & Yang, Lizhong & Fang, Tingyong & Li, Jian, 2009. "Evacuation from a classroom considering the occupant density around exits," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(9), pages 1921-1928.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:389:y:2010:i:4:p:815-824. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.