IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v602y2022ics0378437122004411.html
   My bibliography  Save this article

Examining the effects of exit layout designs on children pedestrians’ exit choice

Author

Listed:
  • Shi, Xiaomeng
  • Xue, Shuqi
  • Shiwakoti, Nirajan
  • Li, Dawei
  • Ye, Zhirui

Abstract

This study investigates the effects of exit layout designs on children pedestrians’ exit choice under normal and emergency scenarios. A series of controlled experiments was performed with 40 children aged 4–5 years old. The experimental setup included a square room with two exits. Exit designs considering six types of exit layouts were examined. The evacuation performance and the herding effects were quantified by analyzing the extracted trajectories from the video of the experiments. Results revealed that there is a significant influence of exit layouts on both evacuation performance and herding effects. In addition, comparing the results from the first three exit layout designs with the findings from past adults’ exit choice experiments, it was discovered that the herding effects were, in general, more significant in children pedestrians but varied by different exit layouts. The findings of this study could be a valuable resource to architects or planners to plan and design exits for schools or kindergartens.

Suggested Citation

  • Shi, Xiaomeng & Xue, Shuqi & Shiwakoti, Nirajan & Li, Dawei & Ye, Zhirui, 2022. "Examining the effects of exit layout designs on children pedestrians’ exit choice," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 602(C).
  • Handle: RePEc:eee:phsmap:v:602:y:2022:i:c:s0378437122004411
    DOI: 10.1016/j.physa.2022.127654
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437122004411
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2022.127654?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shi, Xiaomeng & Xue, Shuqi & Feliciani, Claudio & Shiwakoti, Nirajan & Lin, Junkai & Li, Dawei & Ye, Zhirui, 2021. "Verifying the applicability of a pedestrian simulation model to reproduce the effect of exit design on egress flow under normal and emergency conditions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 562(C).
    2. Chen, Liang & Tang, Tie-Qiao & Huang, Hai-Jun & Song, Ziqi, 2018. "Elementary students’ evacuation route choice in a classroom: A questionnaire-based method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 492(C), pages 1066-1074.
    3. Dirk Helbing & Illés Farkas & Tamás Vicsek, 2000. "Simulating dynamical features of escape panic," Nature, Nature, vol. 407(6803), pages 487-490, September.
    4. Cao, Shuchao & Fu, Libi & Song, Weiguo, 2018. "Exit selection and pedestrian movement in a room with two exits under fire emergency," Applied Mathematics and Computation, Elsevier, vol. 332(C), pages 136-147.
    5. Fang, Zhiming & Song, Weiguo & Zhang, Jun & Wu, Hao, 2010. "Experiment and modeling of exit-selecting behaviors during a building evacuation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(4), pages 815-824.
    6. Xue, Shuqi & Shi, Xiaomeng & Shiwakoti, Nirajan, 2021. "Would walking hand-in-hand increase the traffic efficiency of children pedestrian flow?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 583(C).
    7. Shi, Xiaomeng & Ye, Zhirui & Shiwakoti, Nirajan & Tang, Dounan & Lin, Junkai, 2019. "Examining effect of architectural adjustment on pedestrian crowd flow at bottleneck," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 522(C), pages 350-364.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yue, Hao & Zhang, Junyao & Chen, Wenxin & Wu, Xinsen & Zhang, Xu & Shao, Chunfu, 2021. "Simulation of the influence of spatial obstacles on evacuation pedestrian flow in walking facilities," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 571(C).
    2. Li, Jun & Fu, Siyao & He, Haibo & Jia, Hongfei & Li, Yanzhong & Guo, Yi, 2015. "Simulating large-scale pedestrian movement using CA and event driven model: Methodology and case study," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 437(C), pages 304-321.
    3. Fang, Zhi-Ming & Lv, Wei & Jiang, Li-Xue & Xu, Qing-Feng & Song, Wei-Guo, 2016. "Modeling and assessment of civil aircraft evacuation based on finer-grid," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 448(C), pages 102-112.
    4. Fu, Zhijian & Zhou, Xiaodong & Zhu, Kongjin & Chen, Yanqiu & Zhuang, Yifan & Hu, Yuqi & Yang, Lizhong & Chen, Changkun & Li, Jian, 2015. "A floor field cellular automaton for crowd evacuation considering different walking abilities," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 420(C), pages 294-303.
    5. Gao, Jin & Zhang, Jingjing & He, Jun & Gong, Jinghai & Zhao, Jincheng, 2020. "Experiment and simulation of pedestrian’s behaviors during evacuation in an office," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    6. Zheng, Ying & Li, Xingang & Zhu, Nuo & Jia, Bin & Jiang, Rui, 2018. "Evacuation dynamics with smoking diffusion in three dimension based on an extended Floor-Field model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 507(C), pages 414-426.
    7. Haghani, Milad & Sarvi, Majid, 2019. "Laboratory experimentation and simulation of discrete direction choices: Investigating hypothetical bias, decision-rule effect and external validity based on aggregate prediction measures," Transportation Research Part A: Policy and Practice, Elsevier, vol. 130(C), pages 134-157.
    8. Wang, Weili & Zhang, Jingjing & Li, Haicheng & Xie, Qimiao, 2020. "Experimental study on unidirectional pedestrian flows in a corridor with a fixed obstacle and a temporary obstacle," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 560(C).
    9. Dirk Helbing & Pratik Mukerji, "undated". "Crowd Disasters as Systemic Failures: Analysis of the Love Parade Disaster," Working Papers ETH-RC-12-010, ETH Zurich, Chair of Systems Design.
    10. Fang, Zhi-Ming & Song, Wei-Guo & Liu, Xuan & Lv, Wei & Ma, Jian & Xiao, Xia, 2012. "A continuous distance model (CDM) for the single-file pedestrian movement considering step frequency and length," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(1), pages 307-316.
    11. Milad Haghani & Majid Sarvi & Zahra Shahhoseini & Maik Boltes, 2016. "How Simple Hypothetical-Choice Experiments Can Be Utilized to Learn Humans’ Navigational Escape Decisions in Emergencies," PLOS ONE, Public Library of Science, vol. 11(11), pages 1-24, November.
    12. Cao, Shuchao & Song, Weiguo & Lv, Wei & Fang, Zhiming, 2015. "A multi-grid model for pedestrian evacuation in a room without visibility," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 436(C), pages 45-61.
    13. Chen, Anying & He, Jingtao & Liang, Manchun & Su, Guofeng, 2020. "Crowd response considering herd effect and exit familiarity under emergent occasions: A case study of an evacuation drill experiment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 556(C).
    14. Meiying Jiang & Qibing Jin & Lisheng Cheng, 2019. "Effects of Ticket-Checking Failure on Dynamics of Pedestrians at Multi-Exit Inspection Points with Various Layouts," IJERPH, MDPI, vol. 16(5), pages 1-16, March.
    15. Shi, Xiaomeng & Xue, Shuqi & Feliciani, Claudio & Shiwakoti, Nirajan & Lin, Junkai & Li, Dawei & Ye, Zhirui, 2021. "Verifying the applicability of a pedestrian simulation model to reproduce the effect of exit design on egress flow under normal and emergency conditions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 562(C).
    16. Jiajie Yu & Yanjie Ji & Liangpeng Gao & Qi Gao, 2019. "Optimization of Metro Passenger Organizing of Alighting and Boarding Processes: Simulated Evidence from the Metro Station in Nanjing, China," Sustainability, MDPI, vol. 11(13), pages 1-20, July.
    17. Zhang, Dezhen & Huang, Gaoyue & Ji, Chengtao & Liu, Huiying & Tang, Ying, 2021. "Pedestrian evacuation modeling and simulation in multi-exit scenarios," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 582(C).
    18. Murilo S Baptista & Hai-Peng Ren & Johen C M Swarts & Rodrigo Carareto & Henk Nijmeijer & Celso Grebogi, 2012. "Collective Almost Synchronisation in Complex Networks," PLOS ONE, Public Library of Science, vol. 7(11), pages 1-11, November.
    19. Chen, Changkun & Sun, Huakai & Lei, Peng & Zhao, Dongyue & Shi, Congling, 2021. "An extended model for crowd evacuation considering pedestrian panic in artificial attack," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 571(C).
    20. Ma, Jian & Song, Wei-guo & Zhang, Jun & Lo, Siu-ming & Liao, Guang-xuan, 2010. "k-Nearest-Neighbor interaction induced self-organized pedestrian counter flow," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(10), pages 2101-2117.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:602:y:2022:i:c:s0378437122004411. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.