Simulation study on the effect of obstacles upstream of the building exit on evacuation efficiency
Author
Abstract
Suggested Citation
DOI: 10.1016/j.physa.2025.130547
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Dirk Helbing & Illés Farkas & Tamás Vicsek, 2000. "Simulating dynamical features of escape panic," Nature, Nature, vol. 407(6803), pages 487-490, September.
- Qiu, Hongpeng & Wang, Xuan & Lin, Peng & Lee, Eric W.M., 2024. "Effects of step time and neighbourhood rules on pedestrian evacuation using an extended cellular automata model considering aggressiveness," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 636(C).
- Li, Yang & Chen, Maoyin & Dou, Zhan & Zheng, Xiaoping & Cheng, Yuan & Mebarki, Ahmed, 2019. "A review of cellular automata models for crowd evacuation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 526(C).
- Zhao, Yongxiang & Li, Meifang & Lu, Xin & Tian, Lijun & Yu, Zhiyong & Huang, Kai & Wang, Yana & Li, Ting, 2017. "Optimal layout design of obstacles for panic evacuation using differential evolution," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 465(C), pages 175-194.
- Kirchner, Ansgar & Klüpfel, Hubert & Nishinari, Katsuhiro & Schadschneider, Andreas & Schreckenberg, Michael, 2003. "Simulation of competitive egress behavior: comparison with aircraft evacuation data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 324(3), pages 689-697.
- Miyagawa, Daiki & Ichinose, Genki, 2020. "Cellular automaton model with turning behavior in crowd evacuation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 549(C).
- Hu, Xiangmin & Chen, Tao & Deng, Kaifeng & Wang, Guanning, 2023. "Effects of aggressiveness on pedestrian room evacuation using extended cellular automata model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 619(C).
- Liu, Yulu & Ma, Xuechen & Tao, Yizhou & Dong, Liyun & Ding, Xu & Qiu, Xiang, 2024. "Numerical investigation on the impact of obstacles on phase transition in pedestrian counter-flow," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 635(C).
- Dirk Helbing & Lubos Buzna & Anders Johansson & Torsten Werner, 2005. "Self-Organized Pedestrian Crowd Dynamics: Experiments, Simulations, and Design Solutions," Transportation Science, INFORMS, vol. 39(1), pages 1-24, February.
- Zhang, Wenke & Zhang, Zhichao & Ma, Yueyao & Lee, Eric Wai Ming & Shi, Meng, 2024. "Psychological impatience in pedestrian evacuation: modelling, simulations and experiments," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 635(C).
- Frank, G.A. & Dorso, C.O., 2011. "Room evacuation in the presence of an obstacle," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(11), pages 2135-2145.
- Burstedde, C & Klauck, K & Schadschneider, A & Zittartz, J, 2001. "Simulation of pedestrian dynamics using a two-dimensional cellular automaton," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 295(3), pages 507-525.
- Shi, Xiaomeng & Ye, Zhirui & Shiwakoti, Nirajan & Tang, Dounan & Lin, Junkai, 2019. "Examining effect of architectural adjustment on pedestrian crowd flow at bottleneck," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 522(C), pages 350-364.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Yue, Hao & Zhang, Junyao & Chen, Wenxin & Wu, Xinsen & Zhang, Xu & Shao, Chunfu, 2021. "Simulation of the influence of spatial obstacles on evacuation pedestrian flow in walking facilities," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 571(C).
- Zhao, Yongxiang & Li, Meifang & Lu, Xin & Tian, Lijun & Yu, Zhiyong & Huang, Kai & Wang, Yana & Li, Ting, 2017. "Optimal layout design of obstacles for panic evacuation using differential evolution," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 465(C), pages 175-194.
- Chen, Changkun & Sun, Huakai & Lei, Peng & Zhao, Dongyue & Shi, Congling, 2021. "An extended model for crowd evacuation considering pedestrian panic in artificial attack," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 571(C).
- Chen, Juan & Luo, Qian & Wang, Qiao & Lo, Jacqueline T.Y. & Ma, Jian, 2024. "Experimental study on individual and crowd movement features around obstacles with different shape and size," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 645(C).
- Yue, Hao & Guan, Hongzhi & Zhang, Juan & Shao, Chunfu, 2010. "Study on bi-direction pedestrian flow using cellular automata simulation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(3), pages 527-539.
- Liu, Qiujia & Lu, Linjun & Zhang, Yijing & Hu, Miaoqing, 2022. "Modeling the dynamics of pedestrian evacuation in a complex environment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 585(C).
- Zhao, Yongxiang & Zhang, H.M., 2017. "A unified follow-the-leader model for vehicle, bicycle and pedestrian traffic," Transportation Research Part B: Methodological, Elsevier, vol. 105(C), pages 315-327.
- Cheng, Zhiyang & Yue, Hao & Zhang, Ning & Zhang, Xu, 2024. "Research on mechanism and simulation for avoiding behavior of individual pedestrian," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 634(C).
- Wang, Weili & Zhang, Jingjing & Li, Haicheng & Xie, Qimiao, 2020. "Experimental study on unidirectional pedestrian flows in a corridor with a fixed obstacle and a temporary obstacle," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 560(C).
- Shi, Xiaomeng & Ye, Zhirui & Shiwakoti, Nirajan & Tang, Dounan & Lin, Junkai, 2019. "Examining effect of architectural adjustment on pedestrian crowd flow at bottleneck," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 522(C), pages 350-364.
- Dirk Helbing & Pratik Mukerji, "undated". "Crowd Disasters as Systemic Failures: Analysis of the Love Parade Disaster," Working Papers ETH-RC-12-010, ETH Zurich, Chair of Systems Design.
- Qiu, Hongpeng & Wang, Xuan & Lin, Peng & Lee, Eric W.M., 2024. "Effects of step time and neighbourhood rules on pedestrian evacuation using an extended cellular automata model considering aggressiveness," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 636(C).
- Hu, Yanghui & Bi, Yubo & Ren, Xiangxia & Huang, Shenshi & Gao, Wei, 2023. "Experimental study on the impact of a stationary pedestrian obstacle at the exit on evacuation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 626(C).
- Kefan Xie & Benbu Liang & Yu Song & Xueqin Dong, 2019. "Analysis of Walking-Edge Effect in Train Station Evacuation Scenarios: A Sustainable Transportation Perspective," Sustainability, MDPI, vol. 11(24), pages 1-16, December.
- Miyagawa, Daiki & Ichinose, Genki, 2020. "Cellular automaton model with turning behavior in crowd evacuation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 549(C).
- Liu, Jing & Jia, Yang & Mao, Tianlu & Wang, Zhaoqi, 2022. "Modeling and simulation analysis of crowd evacuation behavior under terrorist attack," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 604(C).
- Zheng, Xiaoping & Cheng, Yuan, 2011. "Conflict game in evacuation process: A study combining Cellular Automata model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(6), pages 1042-1050.
- Hu, Xiangmin & Chen, Tao & Deng, Kaifeng & Wang, Guanning, 2023. "Effects of aggressiveness on pedestrian room evacuation using extended cellular automata model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 619(C).
- Guo, Ren-Yong, 2014. "Simulation of spatial and temporal separation of pedestrian counter flow through a bottleneck," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 415(C), pages 428-439.
- Zheng, Xiaoping & Li, Wei & Guan, Chao, 2010. "Simulation of evacuation processes in a square with a partition wall using a cellular automaton model for pedestrian dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(11), pages 2177-2188.
More about this item
Keywords
Cellular automaton; Synchronously update; Obstacles; Pedestrian evacuation;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:666:y:2025:i:c:s0378437125001992. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.