IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v526y2019ics0378437119303528.html
   My bibliography  Save this article

A review of cellular automata models for crowd evacuation

Author

Listed:
  • Li, Yang
  • Chen, Maoyin
  • Dou, Zhan
  • Zheng, Xiaoping
  • Cheng, Yuan
  • Mebarki, Ahmed

Abstract

With the increasing of risk potential in crowded places, evacuation management becomes practically important to ensure the safety of crowds. The studies of crowd evacuation in normal or emergency situations have become a hot topic. Due to the distinct advantages of high efficiency, strong scalability and simple implementation, cellular automata models (CA) have become one of the most widely-used models for evacuation. However, the practical requirements of evacuation propose some important challenges for CA models, for example, to accurately characterize both position and velocity of individuals, to depict environments and accidents, and to describe human behaviors. In the last 20 years, there are many studies aiming at resolving the above challenges. Starting from the challenges mentioned above, this paper tries to give a review of CA models, specially used for crowd evacuation. Firstly, we give an overview of CA models for evacuation, and put forward research paradigm, modeling framework and classification of CA models. The models used for evacuation are classified into three kinds of categories, i.e. lattice gas model, floor field model, and other field-based models. The last category includes potential field model, electrostatic-induced potential field model, cost potential field model, etc. Then, three main challenges of CA models for evacuation are presented, and the improvements for each type of challenge are summarized. Typical simulation scenarios and research issues are further proposed. Finally, the advantages and disadvantages of CA models are illustrated from the aspects of implementation, performance, scalability, accuracy and applicability.

Suggested Citation

  • Li, Yang & Chen, Maoyin & Dou, Zhan & Zheng, Xiaoping & Cheng, Yuan & Mebarki, Ahmed, 2019. "A review of cellular automata models for crowd evacuation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 526(C).
  • Handle: RePEc:eee:phsmap:v:526:y:2019:i:c:s0378437119303528
    DOI: 10.1016/j.physa.2019.03.117
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437119303528
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2019.03.117?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kefan Xie & Benbu Liang & Yu Song & Xueqin Dong, 2019. "Analysis of Walking-Edge Effect in Train Station Evacuation Scenarios: A Sustainable Transportation Perspective," Sustainability, MDPI, vol. 11(24), pages 1-16, December.
    2. Tamang, Nutthavuth & Sun, Yi, 2023. "Application of the dynamic Monte Carlo method to pedestrian evacuation dynamics," Applied Mathematics and Computation, Elsevier, vol. 445(C).
    3. Moghari, Somaye & Ghorani, Maryam, 2022. "A symbiosis between cellular automata and dynamic weighted multigraph with application on virus spread modeling," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).
    4. Arulsamy, Karen & Delaney, Liam, 2022. "The impact of automatic enrolment on the mental health gap in pension participation: Evidence from the UK," Journal of Health Economics, Elsevier, vol. 86(C).
    5. Kinateder, Max & Warren, William H., 2021. "Exit choice during evacuation is influenced by both the size and proportion of the egressing crowd," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 569(C).
    6. Yu Song & Jia Liu & Qian Liu, 2021. "Dynamic Decision-Making Process of Evacuees during Post-Earthquake Evacuation near an Automatic Flap Barrier Gate System: A Broken Windows Perspective," Sustainability, MDPI, vol. 13(16), pages 1-19, August.
    7. Miyagawa, Daiki & Ichinose, Genki, 2020. "Cellular automaton model with turning behavior in crowd evacuation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 549(C).
    8. Gao, Dong Li & Xie, Wei & Ming Lee, Eric Wai, 2022. "Individual-level exit choice behaviour under uncertain risk," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 604(C).
    9. Zhang, Jun & Cui, Haoran & Chraibi, Mohcine & Yu, Hang & Song, Weiguo, 2023. "Velocity-based model for pedestrian dynamics considering direction preferences," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 613(C).
    10. Zhao, Ruifeng & Zhai, Yue & Qu, Lu & Wang, Ruhao & Huang, Yaoying & Dong, Qi, 2021. "A continuous floor field cellular automata model with interaction area for crowd evacuation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 575(C).
    11. Hu, Xiangmin & Chen, Tao & Deng, Kaifeng & Wang, Guanning, 2023. "Effects of aggressiveness on pedestrian room evacuation using extended cellular automata model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 619(C).
    12. Luo, Lin & Liu, Xiaobo & Fu, Zhijian & Ma, Jian & Liu, Fanxiao, 2020. "Modeling following behavior and right-side-preference in multidirectional pedestrian flows by modified FFCA," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 550(C).
    13. Liu, Zhichen & Li, Ying & Zhang, Zhaoyi & Yu, Wenbo, 2022. "A new evacuation accessibility analysis approach based on spatial information," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    14. Cheng-Jie Jin & Ke-Da Shi & Shu-Yi Fang, 2023. "Simulation of Single-File Pedestrian Flow under High-Density Condition by a Modified Social Force Model," Sustainability, MDPI, vol. 15(11), pages 1-15, May.
    15. Li, Zhenning & Xu, Chengzhong & Bian, Zilin, 2022. "A force-driven model for passenger evacuation in bus fires," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 589(C).
    16. Liu, Jing & Jia, Yang & Mao, Tianlu & Wang, Zhaoqi, 2022. "Modeling and simulation analysis of crowd evacuation behavior under terrorist attack," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 604(C).
    17. Zhang, Yan-Tao & Hu, Mao-Bin & Chen, Yu-Zhang & Shi, Cong-Ling, 2023. "Cooperative platoon forming strategy for connected autonomous vehicles in mixed traffic flow," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 623(C).
    18. Cristiani, E. & Menci, M. & Malagnino, A. & Amaro, G.G., 2023. "An all-densities pedestrian simulator based on a dynamic evaluation of the interpersonal distances," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 616(C).
    19. Yuan, Shuaiqi & Cai, Jitao & Reniers, Genserik & Yang, Ming & Chen, Chao & Wu, Jiansong, 2022. "Safety barrier performance assessment by integrating computational fluid dynamics and evacuation modeling for toxic gas leakage scenarios," Reliability Engineering and System Safety, Elsevier, vol. 226(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:526:y:2019:i:c:s0378437119303528. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.