IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v636y2024ics037843712400075x.html
   My bibliography  Save this article

Effects of step time and neighbourhood rules on pedestrian evacuation using an extended cellular automata model considering aggressiveness

Author

Listed:
  • Qiu, Hongpeng
  • Wang, Xuan
  • Lin, Peng
  • Lee, Eric W.M.

Abstract

Cellular automaton (CA) models have been used to study pedestrian evacuation for many years. The time step and pedestrian evacuation neighbourhood rules are core elements of the CA models for the study of pedestrian dynamics, which have different consequences under different conditions and, therefore, need to be taken seriously. In this paper, we combine pedestrian aggressiveness with the individual’s environment and consider the pros and cons of each of their choices to optimise aggressiveness, and we discuss the impact of time step and neighbourhood rules on pedestrian dynamics under competitive conditions. Multi-velocity two-dimensional floor field cellular automaton (FFCA) is used to consider the impact of aggressiveness on speed and spatial competitiveness. After we optimise aggressiveness, the total evacuation time differs greatly from before in the multi-step method model (MSMM) when pedestrian evacuation follows Moore’s neighbourhood rule. When pedestrian evacuation follows von Neumann’s neighbourhood rule, in the velocity ratio method model (VRMM) and the MSMM, the total evacuation time changes with aggressiveness in the same trend, first showing the phenomenon of ‘faster is faster’ and then ‘faster is slower’, but the greater aggressiveness is, the greater the difference in evacuation time is between the two models. When pedestrian evacuation follows Moore’s neighbourhood rule, the total evacuation time has opposite trends to aggressiveness under the VRMM and the MSMM. In addition, in the VRMM, the total evacuation time of pedestrians following von Neumann’s neighbourhood rule is always much greater, almost twice as long, than when following Moore’s neighbourhood rule. In the MSMM, the difference in the total pedestrian evacuation time following different neighbourhood rules is much more complicated.

Suggested Citation

  • Qiu, Hongpeng & Wang, Xuan & Lin, Peng & Lee, Eric W.M., 2024. "Effects of step time and neighbourhood rules on pedestrian evacuation using an extended cellular automata model considering aggressiveness," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 636(C).
  • Handle: RePEc:eee:phsmap:v:636:y:2024:i:c:s037843712400075x
    DOI: 10.1016/j.physa.2024.129567
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S037843712400075X
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2024.129567?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:636:y:2024:i:c:s037843712400075x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.