IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v604y2022ics0378437122005726.html
   My bibliography  Save this article

Modeling and simulation analysis of crowd evacuation behavior under terrorist attack

Author

Listed:
  • Liu, Jing
  • Jia, Yang
  • Mao, Tianlu
  • Wang, Zhaoqi

Abstract

This paper explores the evacuation behavior of crowds during terrorist attacks. We extend a floor field model for a simulation of dual-role crowds in a three-dimensional (3D) space. In this model, pedestrians can bypass obstacles and move to target positions when avoiding attackers. An attacker can bypass obstacles to pursue target pedestrians. In addition, pedestrians and attacker have their own field of view models. In the model, obstacles obstruct the evacuation route of pedestrians, causing pedestrians to fail to escape the attacker in time and be injured or killed. In addition, obstacles also play a protective role for pedestrians, because obstacles obstruct the attacker’s pursuit route, and especially high obstacles also block the attacker’s view. We conducted 300 experiments to study the effects of obstacles on the evacuation of pedestrians under threat of attack. The following conclusions are drawn: (1) A single obstacle in front of an exit is more conducive to evacuation than no obstacle, (2) higher-density obstacles can better protect pedestrians from being chased by attackers, and (3) the direction of the aisle formed between obstacles should be consistent with the direction of the exit so that pedestrians can be evacuated more efficiently to reduce the death toll. We discovered two interesting phenomena, namely, circle and dispersion, which help to explain why fewer deaths occur in the presence of high-density obstacles.

Suggested Citation

  • Liu, Jing & Jia, Yang & Mao, Tianlu & Wang, Zhaoqi, 2022. "Modeling and simulation analysis of crowd evacuation behavior under terrorist attack," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 604(C).
  • Handle: RePEc:eee:phsmap:v:604:y:2022:i:c:s0378437122005726
    DOI: 10.1016/j.physa.2022.127891
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437122005726
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2022.127891?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Jinhuan & Zhang, Lei & Shi, Qiongyu & Yang, Peng & Hu, Xiaoming, 2015. "Modeling and simulating for congestion pedestrian evacuation with panic," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 428(C), pages 396-409.
    2. Li, Yang & Chen, Maoyin & Dou, Zhan & Zheng, Xiaoping & Cheng, Yuan & Mebarki, Ahmed, 2019. "A review of cellular automata models for crowd evacuation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 526(C).
    3. Lee, Minhyuck & Lee, Jaeyoung & Jun, Chulmin, 2021. "An extended floor field model considering the spread of fire and detour behavior," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 577(C).
    4. Miyagawa, Daiki & Ichinose, Genki, 2020. "Cellular automaton model with turning behavior in crowd evacuation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 549(C).
    5. Hoogendoorn, Serge P. & van Wageningen-Kessels, Femke L.M. & Daamen, Winnie & Duives, Dorine C., 2014. "Continuum modelling of pedestrian flows: From microscopic principles to self-organised macroscopic phenomena," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 416(C), pages 684-694.
    6. Liu, Qian, 2018. "A social force model for the crowd evacuation in a terrorist attack," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 502(C), pages 315-330.
    7. Burstedde, C & Klauck, K & Schadschneider, A & Zittartz, J, 2001. "Simulation of pedestrian dynamics using a two-dimensional cellular automaton," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 295(3), pages 507-525.
    8. Zhang, Hao & Liu, Hong & Qin, Xin & Liu, Baoxi, 2018. "Modified two-layer social force model for emergency earthquake evacuation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 492(C), pages 1107-1119.
    9. Li, Qiaoru & Gao, Yuechao & Chen, Liang & Kang, Zengxin, 2019. "Emergency evacuation with incomplete information in the presence of obstacles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 533(C).
    10. Zheng, Ying & Li, Xingang & Zhu, Nuo & Jia, Bin & Jiang, Rui, 2018. "Evacuation dynamics with smoking diffusion in three dimension based on an extended Floor-Field model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 507(C), pages 414-426.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Guo, Chenglin & Huo, Feizhou & Li, Yufei & Li, Chao & Zhang, Jun, 2024. "An evacuation model considering pedestrian crowding and stampede under terrorist attacks," Reliability Engineering and System Safety, Elsevier, vol. 249(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tamang, Nutthavuth & Sun, Yi, 2023. "Application of the dynamic Monte Carlo method to pedestrian evacuation dynamics," Applied Mathematics and Computation, Elsevier, vol. 445(C).
    2. Chen, Changkun & Sun, Huakai & Lei, Peng & Zhao, Dongyue & Shi, Congling, 2021. "An extended model for crowd evacuation considering pedestrian panic in artificial attack," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 571(C).
    3. Yu Song & Jia Liu & Qian Liu, 2021. "Dynamic Decision-Making Process of Evacuees during Post-Earthquake Evacuation near an Automatic Flap Barrier Gate System: A Broken Windows Perspective," Sustainability, MDPI, vol. 13(16), pages 1-19, August.
    4. Zhang, Wenke & Zhang, Zhichao & Ma, Yueyao & Lee, Eric Wai Ming & Shi, Meng, 2024. "Psychological impatience in pedestrian evacuation: modelling, simulations and experiments," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 635(C).
    5. Yu, Rongfu & Mao, Qinghua & Lv, Jian, 2022. "An extended model for crowd evacuation considering rescue behavior," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 605(C).
    6. Zhihai, Tang & Longcheng, Yang & Jun, Hu & Xiaoning, Li & Lei, You, 2024. "An improved social force model for improving pedestrian avoidance by reducing search size," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 643(C).
    7. Zheng, Linjiang & Peng, Xiaoli & Wang, Linglin & Sun, Dihua, 2019. "Simulation of pedestrian evacuation considering emergency spread and pedestrian panic," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 522(C), pages 167-181.
    8. Cheng, Zhiyang & Yue, Hao & Zhang, Ning & Zhang, Xu, 2024. "Research on mechanism and simulation for avoiding behavior of individual pedestrian," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 634(C).
    9. Ding, Ning & Zhu, Yu & Liu, Xinyan & Dong, Dapeng & Wang, Yang, 2024. "A modified social force model for crowd evacuation considering collision predicting behaviors," Applied Mathematics and Computation, Elsevier, vol. 466(C).
    10. Li, Zhenning & Xu, Chengzhong & Bian, Zilin, 2022. "A force-driven model for passenger evacuation in bus fires," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 589(C).
    11. Huo, Feizhou & Li, Chao & Li, Yufei & Lv, Wei & Ma, Yaping, 2022. "An extended model for describing pedestrian evacuation considering the impact of obstacles on the visual view," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 604(C).
    12. Yunyun Niu & Jieqiong Zhang & Yongpeng Zhang & Jianhua Xiao, 2019. "Modeling Evacuation of High-Rise Buildings Based on Intelligence Decision P System," Sustainability, MDPI, vol. 11(17), pages 1-17, August.
    13. Liu, Zhichen & Li, Ying & Zhang, Zhaoyi & Yu, Wenbo, 2022. "A new evacuation accessibility analysis approach based on spatial information," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    14. Liu, Qian, 2018. "A social force model for the crowd evacuation in a terrorist attack," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 502(C), pages 315-330.
    15. Korbmacher, Raphael & Dang, Huu-Tu & Tordeux, Antoine, 2024. "Predicting pedestrian trajectories at different densities: A multi-criteria empirical analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 634(C).
    16. Xie, Chuan-Zhi & Tang, Tie-Qiao & Hu, Peng-Cheng & Chen, Liang, 2022. "Observation and cellular-automaton based modeling of pedestrian behavior on an escalator," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 605(C).
    17. Fu, Libi & Liu, Yuxing & Shi, Yongqian & Zhao, Yongxiang, 2021. "Dynamics of bidirectional pedestrian flow in a corridor including individuals with disabilities," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 580(C).
    18. Saberi, Meead & Aghabayk, Kayvan & Sobhani, Amir, 2015. "Spatial fluctuations of pedestrian velocities in bidirectional streams: Exploring the effects of self-organization," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 434(C), pages 120-128.
    19. Qiu, Hongpeng & Wang, Xuan & Lin, Peng & Lee, Eric W.M., 2024. "Effects of step time and neighbourhood rules on pedestrian evacuation using an extended cellular automata model considering aggressiveness," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 636(C).
    20. Hu, Xiangmin & Chen, Tao & Deng, Kaifeng & Wang, Guanning, 2023. "Effects of aggressiveness on pedestrian room evacuation using extended cellular automata model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 619(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:604:y:2022:i:c:s0378437122005726. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.