IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v388y2009i22p4787-4796.html
   My bibliography  Save this article

Scaling and memory in the return intervals of realized volatility

Author

Listed:
  • Ren, Fei
  • Gu, Gao-Feng
  • Zhou, Wei-Xing

Abstract

We perform return interval analysis of 1-min realized volatility defined by the sum of absolute high-frequency intraday returns for the Shanghai Stock Exchange Composite Index (SSEC) and 22 constituent stocks of SSEC. The scaling behavior and memory effect of the return intervals between successive realized volatilities above a certain threshold q are carefully investigated. In comparison with the volatility defined by the closest tick prices to the minute marks, the return interval distribution for the realized volatility shows a better scaling behavior since 20 stocks (out of 22 stocks) and the SSEC pass the Kolmogorov–Smirnov (KS) test and exhibit scaling behaviors, among which the scaling function for 8 stocks could be approximated well by a stretched exponential distribution revealed by the KS goodness-of-fit test under the significance level of 5%. The improved scaling behavior is further confirmed by the relation between the fitted exponent γ and the threshold q. In addition, the similarity of the return interval distributions for different stocks is also observed for the realized volatility. The investigation of the conditional probability distribution and the detrended fluctuation analysis (DFA) show that both short-term and long-term memory exists in the return intervals of realized volatility.

Suggested Citation

  • Ren, Fei & Gu, Gao-Feng & Zhou, Wei-Xing, 2009. "Scaling and memory in the return intervals of realized volatility," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(22), pages 4787-4796.
  • Handle: RePEc:eee:phsmap:v:388:y:2009:i:22:p:4787-4796
    DOI: 10.1016/j.physa.2009.08.009
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437109006621
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Scalas, Enrico & Kaizoji, Taisei & Kirchler, Michael & Huber, Jürgen & Tedeschi, Alessandra, 2006. "Waiting times between orders and trades in double-auction markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 366(C), pages 463-471.
    2. Andersen T. G & Bollerslev T. & Diebold F. X & Labys P., 2001. "The Distribution of Realized Exchange Rate Volatility," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 42-55, March.
    3. Enrico Scalas & Rudolf Gorenflo & Hugh Luckock & Francesco Mainardi & Maurizio Mantelli & Marco Raberto, 2004. "Anomalous waiting times in high-frequency financial data," Quantitative Finance, Taylor & Francis Journals, vol. 4(6), pages 695-702.
    4. Bollen, Bernard & Inder, Brett, 2002. "Estimating daily volatility in financial markets utilizing intraday data," Journal of Empirical Finance, Elsevier, vol. 9(5), pages 551-562, December.
    5. Ren, Fei & Guo, Liang & Zhou, Wei-Xing, 2009. "Statistical properties of volatility return intervals of Chinese stocks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(6), pages 881-890.
    6. Plamen Ch. Ivanov & Ainslie Yuen & Boris Podobnik & Youngki Lee, 2004. "Common Scaling Patterns in Intertrade Times of U. S. Stocks," Papers cond-mat/0403662, arXiv.org.
    7. Bunde, Armin & F. Eichner, Jan & Havlin, Shlomo & Kantelhardt, Jan W., 2003. "The effect of long-term correlations on the return periods of rare events," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 330(1), pages 1-7.
    8. Zhi-Qiang Jiang & Wei Chen & Wei-Xing Zhou, 2008. "Scaling in the distribution of intertrade durations of Chinese stocks," Papers 0804.3431, arXiv.org, revised Apr 2008.
    9. Mainardi, Francesco & Raberto, Marco & Gorenflo, Rudolf & Scalas, Enrico, 2000. "Fractional calculus and continuous-time finance II: the waiting-time distribution," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 287(3), pages 468-481.
    10. Hsieh, David A, 1991. " Chaos and Nonlinear Dynamics: Application to Financial Markets," Journal of Finance, American Finance Association, vol. 46(5), pages 1839-1877, December.
    11. Andersen, Torben G. & Bollerslev, Tim & Diebold, Francis X. & Ebens, Heiko, 2001. "The distribution of realized stock return volatility," Journal of Financial Economics, Elsevier, vol. 61(1), pages 43-76, July.
    12. I. Vodenska-Chitkushev & F. Z. Wang & P. Weber & K. Yamasaki & S. Havlin & H. E. Stanley, 2008. "Comparison between volatility return intervals of the S&P 500 index and two common models," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 61(2), pages 217-223, January.
    13. W.-S. Jung & F. Z. Wang & S. Havlin & T. Kaizoji & H.-T. Moon & H. E. Stanley, 2008. "Volatility return intervals analysis of the Japanese market," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 62(1), pages 113-119, March.
    14. Kaizoji, Taisei & Kaizoji, Michiyo, 2004. "Power law for ensembles of stock prices," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 344(1), pages 240-243.
    15. Fei Ren & Wei-Xing Zhou, 2008. "Multiscaling behavior in the volatility return intervals of Chinese indices," Papers 0809.0250, arXiv.org.
    16. Fengzhong Wang & Kazuko Yamasaki & Shlomo Havlin & H. Eugene Stanley, 2005. "Scaling and memory of intraday volatility return intervals in stock market," Papers physics/0511101, arXiv.org.
    17. Qiu, T. & Guo, L. & Chen, G., 2008. "Scaling and memory effect in volatility return interval of the Chinese stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(27), pages 6812-6818.
    18. F. Wang & P. Weber & K. Yamasaki & S. Havlin & H. E. Stanley, 2007. "Statistical regularities in the return intervals of volatility," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 55(2), pages 123-133, January.
    19. Tian Qiu & Liang Guo & Guang Chen, 2008. "Scaling and Memory Effect in Volatility Return Interval of the Chinese Stock Market," Papers 0805.2194, arXiv.org.
    20. Jiang, Zhi-Qiang & Chen, Wei & Zhou, Wei-Xing, 2008. "Scaling in the distribution of intertrade durations of Chinese stocks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(23), pages 5818-5825.
    21. Bunde, Armin & F. Eichner, Jan & Havlin, Shlomo & W. Kantelhardt, Jan, 2004. "Return intervals of rare events in records with long-term persistence," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 342(1), pages 308-314.
    22. Kantelhardt, Jan W & Koscielny-Bunde, Eva & Rego, Henio H.A & Havlin, Shlomo & Bunde, Armin, 2001. "Detecting long-range correlations with detrended fluctuation analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 295(3), pages 441-454.
    23. C. Pennetta, 2006. "Distribution of return intervals of extreme events," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 50(1), pages 95-98, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. repec:eee:phsmap:v:500:y:2018:i:c:p:139-154 is not listed on IDEAS
    2. He, Ling-Yun & Chen, Shu-Peng, 2011. "A new approach to quantify power-law cross-correlation and its application to commodity markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(21), pages 3806-3814.
    3. Xiao-Hui Ni & Zhi-Qiang Jiang & Gao-Feng Gu & Fei Ren & Wei Chen & Wei-Xing Zhou, 2009. "Scaling and memory in the non-poisson process of limit order cancelation," Papers 0911.0057, arXiv.org.
    4. Jia, Zhanliang & Cui, Meilan & Li, Handong, 2012. "Research on the relationship between the multifractality and long memory of realized volatility in the SSECI," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(3), pages 740-749.
    5. Suo, Yuan-Yuan & Wang, Dong-Hua & Li, Sai-Ping, 2015. "Risk estimation of CSI 300 index spot and futures in China from a new perspective," Economic Modelling, Elsevier, vol. 49(C), pages 344-353.
    6. F. Y. Ouyang & B. Zheng & X. F. Jiang, 2014. "Spatial and temporal structures of four financial markets in Greater China," Papers 1402.1046, arXiv.org.
    7. Ouyang, F.Y. & Zheng, B. & Jiang, X.F., 2014. "Spatial and temporal structures of four financial markets in Greater China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 402(C), pages 236-244.
    8. Zhi-Qiang Jiang & Askery A. Canabarro & Boris Podobnik & H. Eugene Stanley & Wei-Xing Zhou, 2015. "Early warning of large volatilities based on recurrence interval analysis in Chinese stock markets," Papers 1508.07505, arXiv.org.
    9. Lin, Xiaoqiang & Fei, Fangyu & Wang, Yudong, 2011. "Analysis of the efficiency of the Shanghai stock market: A volatility perspective," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(20), pages 3486-3495.
    10. Xie, Wen-Jie & Jiang, Zhi-Qiang & Zhou, Wei-Xing, 2014. "Extreme value statistics and recurrence intervals of NYMEX energy futures volatility," Economic Modelling, Elsevier, vol. 36(C), pages 8-17.
    11. Wen-Jie Xie & Zhi-Qiang Jiang & Wei-Xing Zhou, 2012. "Extreme value statistics and recurrence intervals of NYMEX energy futures volatility," Papers 1211.5502, arXiv.org.
    12. Luis A. Gil-Alana & Yun Cao, 2011. "Stock market prices in China. Efficiency, mean reversion, long memory volatility and other implicit dynamics," Faculty Working Papers 12/11, School of Economics and Business Administration, University of Navarra.
    13. Ni, Xiao-Hui & Jiang, Zhi-Qiang & Gu, Gao-Feng & Ren, Fei & Chen, Wei & Zhou, Wei-Xing, 2010. "Scaling and memory in the non-Poisson process of limit order cancelation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(14), pages 2751-2761.
    14. Zhou, Weijie & Wang, Zhengxin & Guo, Haiming, 2016. "Modelling volatility recurrence intervals in the Chinese commodity futures market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 457(C), pages 514-525.
    15. Wei, Yu, 2012. "Forecasting volatility of fuel oil futures in China: GARCH-type, SV or realized volatility models?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(22), pages 5546-5556.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:388:y:2009:i:22:p:4787-4796. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.