IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v244y1997i1p1-24.html
   My bibliography  Save this article

Scaling behavior in economics: The problem of quantifying company growth

Author

Listed:
  • Nunes Amaral, Luís A
  • Buldyrev, Sergey V
  • Havlin, Shlomo
  • Maass, Philipp
  • Salinger, Michael A
  • Eugene Stanley, H
  • Stanley, Michael H.R

Abstract

Inspired by work of both Widom and Mandelbrot, we analyze the Computstat database comprising all publicly traded United States manufacturing companies in the years 1974–1993. We find that the distribution of company size remains stable for the 20 years we study, i.e., the mean value and standard deviation remain approximately constant. We study the distribution of sizes of the “new” companies in each year and find it to be well approximated by a log- normal. We find (i) the distribution of the logarithm of the growth rates, for a fixed growth period of T years, and for companies with approximately the same size S displays an exponential “tent-shaped” form rather than the bell-shaped Gaussian, one would expect for a log-normal distribution, and (ii) the fluctuations in the growth rates — measured by the width of this distribution σT — decrease with company size and increase with time T. We find that for annual growth rates (T = 1), σT ∼ S−β, and that the exponent β takes the same value, within the error bars, for several measures of the size of a company. In particular, we obtain β = 0.20 ± 0.03 for sales, β = 0.18 ± 0.03 for number of employees, β = 0.18±0.03 for assets, β = 0.18 ± 0.03 for cost of goods sold, and β = 0.20 ± 0.03 for propert, plant, and equipment. We propose models that may lead to some insight into these phenomena. First, we study a model in which the growth rate of a company is affected by a tendency to retain an “optimal” size. That model leads to an exponential distribution of the logarithm of growth rate in agreement with the empirical results. Then, we study a hierarchical tree-like model of a company that enables us to relate β to parameters of a company structure. We find that β = −1n Π/1nz, where z defines the mean branching ratio of the hierarchical tree and Π is the probability that the lower levels follow the policy of higher levels in the hierarchy. We also study the output distribution of growth rates of this hierarchical model. We find that the distribution is consistent with the exponential form found empirically. We also discuss the time dependence of the shape of the distribution of the growth rates.

Suggested Citation

  • Nunes Amaral, Luís A & Buldyrev, Sergey V & Havlin, Shlomo & Maass, Philipp & Salinger, Michael A & Eugene Stanley, H & Stanley, Michael H.R, 1997. "Scaling behavior in economics: The problem of quantifying company growth," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 244(1), pages 1-24.
  • Handle: RePEc:eee:phsmap:v:244:y:1997:i:1:p:1-24
    DOI: 10.1016/S0378-4371(97)00301-4
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437197003014
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/S0378-4371(97)00301-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bak, P. & Paczuski, M. & Shubik, M., 1997. "Price variations in a stock market with many agents," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 246(3), pages 430-453.
    2. Galluccio, S. & Caldarelli, G. & Marsili, M. & Zhang, Y.-C., 1997. "Scaling in currency exchange," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 245(3), pages 423-436.
    3. Stephen Hymer & Peter Pashigian, 1962. "Firm Size and Rate of Growth," Journal of Political Economy, University of Chicago Press, vol. 70, pages 556-556.
    4. Yanhui Liu & Pierre Cizeau & Martin Meyer & Chung-Kang Peng & H. Eugene Stanley, 1997. "Correlations in Economic Time Series," Papers cond-mat/9706021, arXiv.org.
    5. Charles P. Bonini, 1958. "Decision Rules for Buffer Inventories," Management Science, INFORMS, vol. 4(4), pages 457-471, July.
    6. Liu, Yanhui & Cizeau, Pierre & Meyer, Martin & Peng, C.-K. & Eugene Stanley, H., 1997. "Correlations in economic time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 245(3), pages 437-440.
    7. Jean-Philippe Bouchaud & Didier Sornette, 1994. "The Black-Scholes option pricing problem in mathematical finance: generalization and extensions for a large class of stochastic processes," Science & Finance (CFM) working paper archive 500040, Science & Finance, Capital Fund Management.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Matassini, Lorenzo & Franci, Fabio, 2001. "On financial markets trading," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 289(3), pages 526-542.
    2. Antonio Doria, Francisco, 2011. "J.B. Rosser Jr. , Handbook of Research on Complexity, Edward Elgar, Cheltenham, UK--Northampton, MA, USA (2009) 436 + viii pp., index, ISBN 978 1 84542 089 5 (cased)," Journal of Economic Behavior & Organization, Elsevier, vol. 78(1-2), pages 196-204, April.
    3. Seemann, Lars & Hua, Jia-Chen & McCauley, Joseph L. & Gunaratne, Gemunu H., 2012. "Ensemble vs. time averages in financial time series analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(23), pages 6024-6032.
    4. Weron, Rafal & Weron, Karina & Weron, Aleksander, 1999. "A conditionally exponential decay approach to scaling in finance," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 264(3), pages 551-561.
    5. Lux, Thomas, 2008. "Applications of statistical physics in finance and economics," Kiel Working Papers 1425, Kiel Institute for the World Economy (IfW).
    6. Schinckus, C., 2013. "Between complexity of modelling and modelling of complexity: An essay on econophysics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(17), pages 3654-3665.
    7. Troy Tassier, 2013. "Handbook of Research on Complexity, by J. Barkley Rosser, Jr. and Edward Elgar," Eastern Economic Journal, Palgrave Macmillan;Eastern Economic Association, vol. 39(1), pages 132-133.
    8. Thomas Lux, 2009. "Applications of Statistical Physics in Finance and Economics," Chapters, in: J. Barkley Rosser Jr. (ed.), Handbook of Research on Complexity, chapter 9, Edward Elgar Publishing.
    9. Darbellay, Georges A & Wuertz, Diethelm, 2000. "The entropy as a tool for analysing statistical dependences in financial time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 287(3), pages 429-439.
    10. Marco Bartolozzi, 2010. "A Multi Agent Model for the Limit Order Book Dynamics," Papers 1005.0182, arXiv.org, revised Oct 2010.
    11. Muchnik, Lev & Bunde, Armin & Havlin, Shlomo, 2009. "Long term memory in extreme returns of financial time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(19), pages 4145-4150.
    12. Xiao, Di & Wang, Jun, 2021. "Attitude interaction for financial price behaviours by contact system with small-world network topology," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 572(C).
    13. Anirban Chakraborti & Ioane Muni Toke & Marco Patriarca & Frederic Abergel, 2011. "Econophysics review: I. Empirical facts," Quantitative Finance, Taylor & Francis Journals, vol. 11(7), pages 991-1012.
    14. Yuan, Naiming & Fu, Zuntao & Mao, Jiangyu, 2010. "Different scaling behaviors in daily temperature records over China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(19), pages 4087-4095.
    15. Pirino, Davide, 2009. "Jump detection and long range dependence," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(7), pages 1150-1156.
    16. Rodriguez, E. & Aguilar-Cornejo, M. & Femat, R. & Alvarez-Ramirez, J., 2014. "US stock market efficiency over weekly, monthly, quarterly and yearly time scales," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 413(C), pages 554-564.
    17. Zhang, Hong-Yan & Kang, Ming-Cui & Li, Jing-Qiang & Liu, Hai-Tao, 2017. "R/S analysis of reaction time in Neuron Type Test for human activity in civil aviation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 469(C), pages 859-870.
    18. Sidorov, S.P. & Faizliev, A.R. & Balash, V.A. & Korobov, E.A., 2016. "Long-range correlation analysis of economic news flow intensity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 444(C), pages 205-212.
    19. Łukasz Bil & Dariusz Grech & Magdalena Zienowicz, 2017. "Asymmetry of price returns—Analysis and perspectives from a non-extensive statistical physics point of view," PLOS ONE, Public Library of Science, vol. 12(11), pages 1-24, November.
    20. Paulo Ferreira & Éder J. A. L. Pereira & Hernane B. B. Pereira, 2020. "The Exposure of European Union Productive Sectors to Oil Price Changes," Sustainability, MDPI, Open Access Journal, vol. 12(4), pages 1-16, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:244:y:1997:i:1:p:1-24. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.