IDEAS home Printed from https://ideas.repec.org/p/sfi/sfiwpa/500040.html
   My bibliography  Save this paper

The Black-Scholes option pricing problem in mathematical finance: generalization and extensions for a large class of stochastic processes

Author

Listed:
  • Jean-Philippe Bouchaud

    (Science & Finance, Capital Fund Management
    CEA Saclay;)

  • Didier Sornette

    (UCLA
    Science & Finance, Capital Fund Management)

Abstract

No abstract is available for this item.

Suggested Citation

  • Jean-Philippe Bouchaud & Didier Sornette, 1994. "The Black-Scholes option pricing problem in mathematical finance: generalization and extensions for a large class of stochastic processes," Science & Finance (CFM) working paper archive 500040, Science & Finance, Capital Fund Management.
  • Handle: RePEc:sfi:sfiwpa:500040
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Trinidad Segovia, J.E. & Fernández-Martínez, M. & Sánchez-Granero, M.A., 2012. "A note on geometric method-based procedures to calculate the Hurst exponent," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(6), pages 2209-2214.
    2. Wang, Xiao-Tian, 2011. "Scaling and long-range dependence in option pricing V: Multiscaling hedging and implied volatility smiles under the fractional Black–Scholes model with transaction costs," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(9), pages 1623-1634.
    3. Daniel T. Cassidy & Michael J. Hamp & Rachid Ouyed, 2010. "Student's t-Distribution Based Option Sensitivities: Greeks for the Gosset Formulae," Papers 1003.1344, arXiv.org, revised Jul 2010.
    4. Wang, Xiao-Tian & Li, Zhe & Zhuang, Le, 2017. "European option pricing under the Student’s t noise with jumps," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 469(C), pages 848-858.
    5. D. Sornette, 2014. "Physics and Financial Economics (1776-2014): Puzzles, Ising and Agent-Based models," Papers 1404.0243, arXiv.org.
    6. Jean-Philippe Aguilar & Cyril Coste & Hagen Kleinert & Jan Korbel, 2016. "Regularization and analytic option pricing under $\alpha$-stable distribution of arbitrary asymmetry," Papers 1611.04320, arXiv.org, revised Nov 2016.
    7. Kakushadze, Zura, 2017. "Volatility smile as relativistic effect," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 475(C), pages 59-76.
    8. Cassidy, Daniel T. & Hamp, Michael J. & Ouyed, Rachid, 2010. "Pricing European options with a log Student’s t-distribution: A Gosset formula," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(24), pages 5736-5748.
    9. J. Doyne Farmer, 1999. "Physicists Attempt to Scale the Ivory Towers of Finance," Working Papers 99-10-073, Santa Fe Institute.
    10. Sergei Fedotov & Sergei Mikhailov, 1998. "Option Pricing Model for Incomplete Market," Papers cond-mat/9807397, arXiv.org, revised Aug 1998.
    11. Wang, Xiao-Tian, 2010. "Scaling and long range dependence in option pricing, IV: Pricing European options with transaction costs under the multifractional Black–Scholes model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(4), pages 789-796.
    12. D. Sornette, 1998. "``String'' formulation of the Dynamics of the Forward Interest Rate Curve," Papers cond-mat/9802136, arXiv.org.
    13. Neda Esmaeeli & Peter Imkeller, 2015. "American Options with Asymmetric Information and Reflected BSDE," Papers 1505.05046, arXiv.org, revised Aug 2017.
    14. Daniel T. Cassidy & Michael J. Hamp & Rachid Ouyed, 2013. "Log Student’s t -distribution-based option sensitivities: Greeks for the Gosset formulae," Quantitative Finance, Taylor & Francis Journals, vol. 13(8), pages 1289-1302, July.
    15. Wang, Xiao-Tian, 2010. "Scaling and long-range dependence in option pricing I: Pricing European option with transaction costs under the fractional Black–Scholes model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(3), pages 438-444.
    16. Wang, Xiao-Tian & Yan, Hai-Gang & Tang, Ming-Ming & Zhu, En-Hui, 2010. "Scaling and long-range dependence in option pricing III: A fractional version of the Merton model with transaction costs," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(3), pages 452-458.
    17. Stephane Crepey, 2004. "Delta-hedging vega risk?," Quantitative Finance, Taylor & Francis Journals, vol. 4(5), pages 559-579.
    18. E. Aurell & R. Baviera & O. Hammarlid & M. Serva & A. Vulpiani, 1998. "A general methodology to price and hedge derivatives in incomplete markets," Papers cond-mat/9810257, arXiv.org, revised Apr 1999.
    19. Cassidy, Daniel T., 2011. "Describing n-day returns with Student’s t-distributions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(15), pages 2794-2802.
    20. Jovanovic, Franck & Schinckus, Christophe, 2017. "Econophysics and Financial Economics: An Emerging Dialogue," OUP Catalogue, Oxford University Press, number 9780190205034.

    More about this item

    JEL classification:

    • G10 - Financial Economics - - General Financial Markets - - - General (includes Measurement and Data)

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sfi:sfiwpa:500040. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (). General contact details of provider: http://edirc.repec.org/data/scfinfr.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.