IDEAS home Printed from https://ideas.repec.org/a/eee/matsoc/v96y2018icp49-62.html
   My bibliography  Save this article

A probabilistic evaluation framework for preference aggregation reflecting group homogeneity

Author

Listed:
  • Jansen, C.
  • Schollmeyer, G.
  • Augustin, T.

Abstract

Groups differ in the homogeneity of their members’ preferences. Reflecting this, we propose a probabilistic criterion for evaluating and comparing the adequateness of preference aggregation procedures that takes into account information on the considered group’s homogeneity structure. Further, we discuss two approaches for approximating our criterion if information is only imperfectly given and show how to estimate these approximations from data. As a preparation, we elaborate some general minimal requirements for measuring homogeneity and discuss a specific proposal for a homogeneity measure. Finally, we investigate our framework by comparing aggregation rules in a simulation study.

Suggested Citation

  • Jansen, C. & Schollmeyer, G. & Augustin, T., 2018. "A probabilistic evaluation framework for preference aggregation reflecting group homogeneity," Mathematical Social Sciences, Elsevier, vol. 96(C), pages 49-62.
  • Handle: RePEc:eee:matsoc:v:96:y:2018:i:c:p:49-62
    DOI: 10.1016/j.mathsocsci.2018.09.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0165489618300660
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.mathsocsci.2018.09.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Diss, Mostapha & Louichi, Ahmed & Merlin, Vincent & Smaoui, Hatem, 2012. "An example of probability computations under the IAC assumption: The stability of scoring rules," Mathematical Social Sciences, Elsevier, vol. 64(1), pages 57-66.
    2. Esteban, Joan & Ray, Debraj, 1994. "On the Measurement of Polarization," Econometrica, Econometric Society, vol. 62(4), pages 819-851, July.
    3. R. Abrams, 1976. "The voter's paradox and the homogeneity of individual preference orders," Public Choice, Springer, vol. 26(1), pages 19-27, June.
    4. Can, Burak & Ozkes, Ali Ihsan & Storcken, Ton, 2015. "Measuring polarization in preferences," Mathematical Social Sciences, Elsevier, vol. 78(C), pages 76-79.
    5. Maniquet, François & Mongin, Philippe, 2016. "A theorem on aggregating classifications," Mathematical Social Sciences, Elsevier, vol. 79(C), pages 6-10.
    6. Jean-Yves Duclos & Joan Esteban & Debraj Ray, 2004. "Polarization: Concepts, Measurement, Estimation," Econometrica, Econometric Society, vol. 72(6), pages 1737-1772, November.
    7. Lepelley, Dominique & Valognes, Fabrice, 2003. "Voting Rules, Manipulability and Social Homogeneity," Public Choice, Springer, vol. 116(1-2), pages 165-184, July.
    8. Sven Berg, 1985. "Paradox of voting under an urn model: The effect of homogeneity," Public Choice, Springer, vol. 47(2), pages 377-387, January.
    9. Ali, Alnur & Meilă, Marina, 2012. "Experiments with Kemeny ranking: What works when?," Mathematical Social Sciences, Elsevier, vol. 64(1), pages 28-40.
    10. Geoffrey Pritchard & Arkadii Slinko, 2006. "On the Average Minimum Size of a Manipulating Coalition," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 27(2), pages 263-277, October.
    11. Aleskerov, Fuad & Karabekyan, Daniel & Sanver, M. Remzi & Yakuba, Vyacheslav, 2012. "On the manipulability of voting rules: The case of 4 and 5 alternatives," Mathematical Social Sciences, Elsevier, vol. 64(1), pages 67-73.
    12. Jamison, Dean & Luce, Edward, 1972. "Social homogeneity and the probability of intransitive majority rule," Journal of Economic Theory, Elsevier, vol. 5(1), pages 79-87, August.
    13. Niemi, Richard G., 1969. "Majority Decision-Making with Partial Unidimensionality," American Political Science Review, Cambridge University Press, vol. 63(2), pages 488-497, June.
    14. Jorge Alcalde-Unzu & Marc Vorsatz, 2013. "Measuring the cohesiveness of preferences: an axiomatic analysis," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 41(4), pages 965-988, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Burak Can & Ali Ihsan Ozkes & Ton Storcken, 2017. "Generalized Measures of Polarization in Preferences," AMSE Working Papers 1734, Aix-Marseille School of Economics, France.
    2. Huremović, Kenan & Ozkes, Ali I., 2022. "Polarization in networks: Identification–alienation framework," Journal of Mathematical Economics, Elsevier, vol. 102(C).
    3. Lirong Xia, 2022. "The Impact of a Coalition: Assessing the Likelihood of Voter Influence in Large Elections," Papers 2202.06411, arXiv.org, revised Jun 2023.
    4. Sven Berg, 1985. "Paradox of voting under an urn model: The effect of homogeneity," Public Choice, Springer, vol. 47(2), pages 377-387, January.
    5. Alexander Karpov, 2017. "Preference Diversity Orderings," Group Decision and Negotiation, Springer, vol. 26(4), pages 753-774, July.
    6. Salvatore Barbaro, 2021. "A social-choice perspective on authoritarianism and political polarization," Working Papers 2108, Gutenberg School of Management and Economics, Johannes Gutenberg-Universität Mainz.
    7. Jo Thori Lind & Karl Moene, 2011. "Miserly Developments," Journal of Development Studies, Taylor & Francis Journals, vol. 47(9), pages 1332-1352, June.
    8. Teixidó-Figueras, J. & Duro, J.A., 2014. "Spatial Polarization of the Ecological Footprint Distribution," Ecological Economics, Elsevier, vol. 104(C), pages 93-106.
    9. Liu, Shen & Maharaj, Elizabeth Ann & Inder, Brett, 2014. "Polarization of forecast densities: A new approach to time series classification," Computational Statistics & Data Analysis, Elsevier, vol. 70(C), pages 345-361.
    10. Daniel J. Henderson & Christopher F. Parmeter & R. Robert Russell, 2008. "Modes, weighted modes, and calibrated modes: evidence of clustering using modality tests," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 23(5), pages 607-638.
    11. Alesina, Alberto & Devleeschauwer, Arnaud & Easterly, William & Kurlat, Sergio & Wacziarg, Romain, 2003. "Fractionalization," Journal of Economic Growth, Springer, vol. 8(2), pages 155-194, June.
    12. Joan Esteban & Laura Mayoral & Debraj Ray, 2012. "Ethnicity and Conflict: An Empirical Study," American Economic Review, American Economic Association, vol. 102(4), pages 1310-1342, June.
    13. Sommarat Chantarat & Christopher Barrett, 2012. "Social network capital, economic mobility and poverty traps," The Journal of Economic Inequality, Springer;Society for the Study of Economic Inequality, vol. 10(3), pages 299-342, September.
    14. Eric Kamwa, 2019. "On the Likelihood of the Borda Effect: The Overall Probabilities for General Weighted Scoring Rules and Scoring Runoff Rules," Group Decision and Negotiation, Springer, vol. 28(3), pages 519-541, June.
    15. Hodler, Roland & Valsecchi, Michele & Vesperoni, Alberto, 2021. "Ethnic geography: Measurement and evidence," Journal of Public Economics, Elsevier, vol. 200(C).
    16. Koki Oikawa & Minoru Kitahara, 2017. "Technology Polarization," Working Papers e113, Tokyo Center for Economic Research.
    17. James Green-Armytage & T. Tideman & Rafael Cosman, 2016. "Statistical evaluation of voting rules," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 46(1), pages 183-212, January.
    18. Riccardo Massari, 2009. "Is income becoming more polarized Italy? A closer look with a distributional approach," Working Papers 1, Doctoral School of Economics, Sapienza University of Rome.
    19. Yuliya A. Veselova, 2020. "Does Incomplete Information Reduce Manipulability?," Group Decision and Negotiation, Springer, vol. 29(3), pages 523-548, June.
    20. Gordon Anderson & Oliver Linton & Yoon-Jae Wang, 2009. "Non Parametric Estimation of a Polarization Measure," Working Papers tecipa-363, University of Toronto, Department of Economics.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matsoc:v:96:y:2018:i:c:p:49-62. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/505565 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.