IDEAS home Printed from https://ideas.repec.org/a/eee/matsoc/v60y2010i3p186-190.html
   My bibliography  Save this article

A generalization of correlated equilibrium: A new protocol

Author

Listed:
  • Forgó, Ferenc

Abstract

A new correlation scheme (leading to a special equilibrium called "soft" correlated equilibrium) is introduced for finite games. After randomization over the outcome space, players have the choice either to follow the recommendation of an umpire blindly or freely choose some other action except the one suggested. This scheme can lead to Pareto-better outcomes than the simple extension introduced by [Moulin, H., Vial, J.-P., 1978. Strategically zero-sum games: the class of games whose completely mixed equilibria cannot be improved upon. International Journal of Game Theory 7, 201-221]. The informational and interpretational aspects of soft correlated equilibria are also discussed in detail. The power of the generalization is illustrated in the prisoners's dilemma and a congestion game.

Suggested Citation

  • Forgó, Ferenc, 2010. "A generalization of correlated equilibrium: A new protocol," Mathematical Social Sciences, Elsevier, vol. 60(3), pages 186-190, November.
  • Handle: RePEc:eee:matsoc:v:60:y:2010:i:3:p:186-190
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0165-4896(10)00070-3
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Aumann, Robert J, 1987. "Correlated Equilibrium as an Expression of Bayesian Rationality," Econometrica, Econometric Society, vol. 55(1), pages 1-18, January.
    2. Aumann, Robert J., 1974. "Subjectivity and correlation in randomized strategies," Journal of Mathematical Economics, Elsevier, vol. 1(1), pages 67-96, March.
    3. Young, H. Peyton, 2004. "Strategic Learning and its Limits," OUP Catalogue, Oxford University Press, number 9780199269181.
    4. Forgo, Ferenc & Fulop, Janos & Prill, Maria, 2005. "Game theoretic models for climate change negotiations," European Journal of Operational Research, Elsevier, vol. 160(1), pages 252-267, January.
    5. Forges, Francoise M, 1986. "An Approach to Communication Equilibria," Econometrica, Econometric Society, vol. 54(6), pages 1375-1385, November.
    6. Myerson, Roger B, 1986. "Multistage Games with Communication," Econometrica, Econometric Society, vol. 54(2), pages 323-358, March.
    7. Timothy Cason & Tridib Sharma, 2007. "Recommended play and correlated equilibria: an experimental study," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 33(1), pages 11-27, October.
    8. FORGES , Françoise, 1993. "Five Legitimate Definitions of Correlated Equilibrium in Games with Incomplete Information," LIDAM Discussion Papers CORE 1993009, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    9. Sergiu Hart & David Schmeidler, 2013. "Existence Of Correlated Equilibria," World Scientific Book Chapters, in: Simple Adaptive Strategies From Regret-Matching to Uncoupled Dynamics, chapter 1, pages 3-14, World Scientific Publishing Co. Pte. Ltd..
    10. Juergen Bracht & Nick Feltovich, 2006. "Efficiency in the Trust Game: an Experimental Study of Preplay Contracting," The Centre for Market and Public Organisation 06/154, The Centre for Market and Public Organisation, University of Bristol, UK.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ozdogan, Ayca & Saglam, Ismail, 2021. "Correlated equilibrium under costly disobedience," Mathematical Social Sciences, Elsevier, vol. 114(C), pages 98-104.
    2. Trivikram Dokka Venkata Satyanaraya & Herve Moulin & Indrajit Ray & Sonali Sen Gupta, 2019. "Improving Abatement Levels and Welfare by Coarse Correlation in an Environmental Game," Working Papers 266042710, Lancaster University Management School, Economics Department.
    3. Trivikram Dokka & Hervé Moulin & Indrajit Ray & Sonali SenGupta, 2023. "Equilibrium design in an n-player quadratic game," Review of Economic Design, Springer;Society for Economic Design, vol. 27(2), pages 419-438, June.
    4. Trivikram Dokka Venkata Satyanaraya & Herve Moulin & Indrajit Ray & Sonali Sen Gupta, 2020. "Equilibrium Design by Coarse Correlation in Quadratic Games," Working Papers 301895429, Lancaster University Management School, Economics Department.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ferenc Forgó, 2011. "Generalized correlated equilibrium for two-person games in extensive form with perfect information," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 19(2), pages 201-213, June.
    2. Bernhard von Stengel & Françoise Forges, 2008. "Extensive-Form Correlated Equilibrium: Definition and Computational Complexity," Mathematics of Operations Research, INFORMS, vol. 33(4), pages 1002-1022, November.
    3. Konstantinos Georgalos & Indrajit Ray & Sonali SenGupta, 2020. "Nash versus coarse correlation," Experimental Economics, Springer;Economic Science Association, vol. 23(4), pages 1178-1204, December.
    4. Ozdogan, Ayca & Saglam, Ismail, 2021. "Correlated equilibrium under costly disobedience," Mathematical Social Sciences, Elsevier, vol. 114(C), pages 98-104.
    5. Ayala Mashiah-Yaakovi, 2015. "Correlated Equilibria in Stochastic Games with Borel Measurable Payoffs," Dynamic Games and Applications, Springer, vol. 5(1), pages 120-135, March.
    6. Luo, Xiao & Qiao, Yongchuan & Sun, Yang, 2022. "A revelation principle for correlated equilibrium under trembling-hand perfection," Journal of Economic Theory, Elsevier, vol. 200(C).
    7. Ray, Indrajit, 1996. "Efficiency in correlated equilibrium," Mathematical Social Sciences, Elsevier, vol. 32(3), pages 157-178, December.
    8. Georgalos, Konstantinos & Ray, Indrajit & Gupta, Sonali Sen, 2019. "Nash vs. Coarse Correlation," Cardiff Economics Working Papers E2019/3, Cardiff University, Cardiff Business School, Economics Section.
    9. Chirantan Ganguly & Indrajit Ray, 2023. "Simple Mediation in a Cheap-Talk Game," Games, MDPI, vol. 14(3), pages 1-14, June.
    10. Indrajit Ray & Sonali Gupta, 2013. "Coarse correlated equilibria in linear duopoly games," International Journal of Game Theory, Springer;Game Theory Society, vol. 42(2), pages 541-562, May.
    11. Françoise Forges, 2006. "Correlated Equilibrium in Games with Incomplete Information Revisited," Theory and Decision, Springer, vol. 61(4), pages 329-344, December.
    12. Yohan Pelosse, 2024. "Correlated Equilibrium Strategies with Multiple Independent Randomization Devices," Working Papers 2024-05, Swansea University, School of Management.
    13. John Duffy & Ernest K. Lai & Wooyoung Lim, 2017. "Coordination via correlation: an experimental study," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 64(2), pages 265-304, August.
    14. Solan, Eilon & Vieille, Nicolas, 2002. "Correlated Equilibrium in Stochastic Games," Games and Economic Behavior, Elsevier, vol. 38(2), pages 362-399, February.
    15. Moulin, Herve & Ray, Indrajit & Sen Gupta, Sonali, 2014. "Improving Nash by coarse correlation," Journal of Economic Theory, Elsevier, vol. 150(C), pages 852-865.
    16. Rabah Amir & Sergei Belkov & Igor V. Evstigneev, 2017. "Correlated equilibrium in a nutshell," Theory and Decision, Springer, vol. 83(4), pages 457-468, December.
    17. Grant, Simon & Stauber, Ronald, 2022. "Delegation and ambiguity in correlated equilibrium," Games and Economic Behavior, Elsevier, vol. 132(C), pages 487-509.
    18. Soham R. Phade & Venkat Anantharam, 2023. "Learning in Games with Cumulative Prospect Theoretic Preferences," Dynamic Games and Applications, Springer, vol. 13(1), pages 265-306, March.
    19. Blume, Andreas, 2012. "A class of strategy-correlated equilibria in sender–receiver games," Games and Economic Behavior, Elsevier, vol. 75(2), pages 510-517.
    20. Herve Moulin & Indrajit Ray & Sonali Sen Gupta, 2013. "Coarse Correlated Equilibria in an Abatement Game," Discussion Papers 13-11, Department of Economics, University of Birmingham.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matsoc:v:60:y:2010:i:3:p:186-190. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/505565 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.