IDEAS home Printed from https://ideas.repec.org/a/eee/mateco/v49y2013i6p435-440.html
   My bibliography  Save this article

The equilibrium set of infinite dimensional Walrasian economies and the natural projection

Author

Listed:
  • Accinelli, Elvio

Abstract

The natural projection plays a fundamental role to understand the behavior of the Walrasian economies. In this paper, we extend this method to analyze the behavior of infinite dimensional economies. We introduce the definition of the social equilibrium set, and we show that there exists a bijection between this set and the Walrasian equilibrium set of an infinite dimensional economy. In order to describe the main topological characteristics of both sets, we analyze the main differential characteristics of the excess utility function and then, we extend the method of the natural projection as suggested by Y. Balasko.

Suggested Citation

  • Accinelli, Elvio, 2013. "The equilibrium set of infinite dimensional Walrasian economies and the natural projection," Journal of Mathematical Economics, Elsevier, vol. 49(6), pages 435-440.
  • Handle: RePEc:eee:mateco:v:49:y:2013:i:6:p:435-440
    DOI: 10.1016/j.jmateco.2013.08.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304406813000736
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chris Shannon & William R. Zame, 2002. "Quadratic Concavity and Determinacy of Equilibrium," Econometrica, Econometric Society, vol. 70(2), pages 631-662, March.
    2. Debreu, Gerard, 1970. "Economies with a Finite Set of Equilibria," Econometrica, Econometric Society, vol. 38(3), pages 387-392, May.
    3. Chichilnisky, Graciela & Zhou, Yuqing, 1998. "Smooth infinite economies," Journal of Mathematical Economics, Elsevier, vol. 29(1), pages 27-42, January.
    4. Elvio ACCINELLI & Puchet MARTIN, "undated". "A Classification Of Infinity Dimensional Walrasian Economies," EcoMod2005 280900000, EcoMod.
    5. Araujo, Aloisio, 1985. "Lack of Pareto Optimal Allocations in Economies with Infinitely Many Commodities: The Need for Impatience," Econometrica, Econometric Society, vol. 53(2), pages 455-461, March.
    6. Edward C. Prescott & Rajnish Mehra, 2005. "Recursive Competitive Equilibrium: The Case Of Homogeneous Households," World Scientific Book Chapters,in: Theory Of Valuation, chapter 11, pages 357-371 World Scientific Publishing Co. Pte. Ltd..
    7. Mas-Colell, Andreu & Zame, William R., 1991. "Equilibrium theory in infinite dimensional spaces," Handbook of Mathematical Economics,in: W. Hildenbrand & H. Sonnenschein (ed.), Handbook of Mathematical Economics, edition 1, volume 4, chapter 34, pages 1835-1898 Elsevier.
    8. Araujo A. & Monteiro P. K., 1994. "The General Existence of Extended Price Equilibria with Infinitely Many Commodities," Journal of Economic Theory, Elsevier, vol. 63(2), pages 408-416, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Accinelli, E. & Covarrubias, E., 2014. "An extension of the Sard–Smale Theorem to convex domains with an empty interior," Journal of Mathematical Economics, Elsevier, vol. 55(C), pages 123-128.
    2. Accinelli, Elvio & Covarrubias, Enrique, 2014. "Smooth economic analysis for general spaces of commodities," MPRA Paper 53222, University Library of Munich, Germany.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:mateco:v:49:y:2013:i:6:p:435-440. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/jmateco .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.