IDEAS home Printed from https://ideas.repec.org/a/eee/mateco/v46y2010i2p191-213.html
   My bibliography  Save this article

Large but finite games with asymmetric information

Author

Listed:
  • Noguchi, Mitsunori

Abstract

Carmona considered an increasing sequence of finite games in each of which players are characterized by payoff functions that are restricted to vary within a uniformly equicontinuous set and choose their strategies from a common compact metric strategy set. Then Carmona proved that each finite game in an upper tail of such a sequence admits an approximate Nash equilibrium in pure strategies. Noguchi (2009) and Yannelis (2009) recently proved that a Nash equilibrium in pure strategies exists in a continuum game with asymmetric information in which players are endowed with private information, a prior probability and choose strategies that are compatible with their private information and maximize their interim expected payoffs. The aim of this paper is to extend Carmona's result to the broader context of Bayesian equilibria and demonstrate that the existence result obtained for continuum games with asymmetric information approximately holds for large but finite games belonging to an upper tail of a sequence of finite games with asymmetric information.

Suggested Citation

  • Noguchi, Mitsunori, 2010. "Large but finite games with asymmetric information," Journal of Mathematical Economics, Elsevier, vol. 46(2), pages 191-213, March.
  • Handle: RePEc:eee:mateco:v:46:y:2010:i:2:p:191-213
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304-4068(09)00133-5
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hart, Sergiu & Hildenbrand, Werner & Kohlberg, Elon, 1974. "On equilibrium allocations as distributions on the commodity space," Journal of Mathematical Economics, Elsevier, vol. 1(2), pages 159-166, August.
    2. Andreu Mas-Colell & Xavier Vives, 1993. "Implementation in Economies with a Continuum of Agents," Review of Economic Studies, Oxford University Press, vol. 60(3), pages 613-629.
    3. Guilherme Carmona, 2004. "On the Existence of Pure Strategy Nash Equilibria in Large Games," Game Theory and Information 0412008, EconWPA.
    4. Noguchi, Mitsunori, 2009. "Existence of Nash equilibria in large games," Journal of Mathematical Economics, Elsevier, vol. 45(1-2), pages 168-184, January.
    5. Khan, M. Ali & Sun, Yeneng, 2002. "Non-cooperative games with many players," Handbook of Game Theory with Economic Applications,in: R.J. Aumann & S. Hart (ed.), Handbook of Game Theory with Economic Applications, edition 1, volume 3, chapter 46, pages 1761-1808 Elsevier.
    6. Ehud Kalai, 2004. "Large Robust Games," Econometrica, Econometric Society, vol. 72(6), pages 1631-1665, November.
    7. Carmona, Guilherme, 2008. "Purification of Bayesian-Nash equilibria in large games with compact type and action spaces," Journal of Mathematical Economics, Elsevier, vol. 44(12), pages 1302-1311, December.
    8. Nicholas Yannelis, 2009. "Debreu’s social equilibrium theorem with asymmetric information and a continuum of agents," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 38(2), pages 419-432, February.
    9. Mas-Colell, Andreu, 1984. "On a theorem of Schmeidler," Journal of Mathematical Economics, Elsevier, vol. 13(3), pages 201-206, December.
    10. Khan, M. Ali & Sun, Yeneng, 1999. "Non-cooperative games on hyperfinite Loeb spaces1," Journal of Mathematical Economics, Elsevier, vol. 31(4), pages 455-492, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Martin Meier & Enrico Minelli & Herakles Polemarchakis, 2014. "Competitive markets with private information on both sides," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 55(2), pages 257-280, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:mateco:v:46:y:2010:i:2:p:191-213. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/jmateco .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.