IDEAS home Printed from https://ideas.repec.org/a/eee/mateco/v25y1996i4p381-390.html

Further remarks on totally ordered representable subsets of Euclidean space

Author

Listed:
  • Candeal, Juan C.
  • Indurain, Esteban
  • Mehta, Ghanshyam B.

Abstract

No abstract is available for this item.

Suggested Citation

  • Candeal, Juan C. & Indurain, Esteban & Mehta, Ghanshyam B., 1996. "Further remarks on totally ordered representable subsets of Euclidean space," Journal of Mathematical Economics, Elsevier, vol. 25(4), pages 381-390.
  • Handle: RePEc:eee:mateco:v:25:y:1996:i:4:p:381-390
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/0304-4068(95)00734-2
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Beardon, A F, 1992. "Debreu's Gap Theorem," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 2(1), pages 150-152, January.
    2. Beardon, Alan F, 1994. "Utility Theory and Continuous Monotonic Functions," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 4(4), pages 531-538, May.
    3. Candeal, J. C. & Indurain, E., 1993. "Utility functions on chains," Journal of Mathematical Economics, Elsevier, vol. 22(2), pages 161-168.
    4. Mas-Colell, Andreu & Zame, William R., 1991. "Equilibrium theory in infinite dimensional spaces," Handbook of Mathematical Economics, in: W. Hildenbrand & H. Sonnenschein (ed.), Handbook of Mathematical Economics, edition 1, volume 4, chapter 34, pages 1835-1898, Elsevier.
    5. Beardon, Alan F., 1994. "Totally ordered subsets of Euclidean space," Journal of Mathematical Economics, Elsevier, vol. 23(4), pages 391-393, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Candeal, Juan C. & Indurain, Esteban & Mehta, Ghanshyam B., 2004. "Utility functions on locally connected spaces," Journal of Mathematical Economics, Elsevier, vol. 40(6), pages 701-711, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Candeal, Juan C. & Indurain, Esteban & Mehta, Ghanshyam B., 2004. "Utility functions on locally connected spaces," Journal of Mathematical Economics, Elsevier, vol. 40(6), pages 701-711, September.
    2. van der Laan, Gerard & Withagen, Cees, 2003. "Quasi-equilibrium in economies with infinite dimensional commodity spaces: a truncation approach," Journal of Economic Dynamics and Control, Elsevier, vol. 27(3), pages 423-444, January.
    3. Mas-Colell, Andreu & Zame, William R., 1996. "The existence of security market equilibrium with a non-atomic state space," Journal of Mathematical Economics, Elsevier, vol. 26(1), pages 63-84.
    4. Charalambos Aliprantis & Kim Border & Owen Burkinshaw, 1996. "Market economies with many commodities," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 19(1), pages 113-185, March.
    5. Charalambos Aliprantis & Rabee Tourky, 2009. "Equilibria in incomplete assets economies with infinite dimensional spot markets," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 38(2), pages 221-262, February.
    6. Bosi, G. & Mehta, G. B., 2002. "Existence of a semicontinuous or continuous utility function: a unified approach and an elementary proof," Journal of Mathematical Economics, Elsevier, vol. 38(3), pages 311-328, November.
    7. Athreya, Kartik B., 2014. "Big Ideas in Macroeconomics: A Nontechnical View," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262019736, December.
    8. Kaori Hasegawa, 2000. "The Second Fundamental Theorem of Welfare Economics and the Existence of Competitive Equilibrium over an Infinite Horizon with General Consumption Sets," Econometric Society World Congress 2000 Contributed Papers 1377, Econometric Society.
    9. V. Filipe Martins-da-Rocha & Nicholas C. Yannelis, 2011. "Nonemptiness of the alpha-core," Economics Discussion Paper Series 1105, Economics, The University of Manchester.
    10. M. Ali Khan & Metin Uyanık, 2021. "Topological connectedness and behavioral assumptions on preferences: a two-way relationship," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 71(2), pages 411-460, March.
    11. Achille Basile & Maria Gabriella Graziano & Ciro Tarantino, 2018. "Coalitional fairness with participation rates," Journal of Economics, Springer, vol. 123(2), pages 97-139, March.
    12. Riedel, Frank & Herzberg, Frederik, 2013. "Existence of financial equilibria in continuous time with potentially complete markets," Journal of Mathematical Economics, Elsevier, vol. 49(5), pages 398-404.
    13. Marakulin, Valeri M., 1998. "Production equilibria in vector lattices with unordered preferences : an approach using finite-dimensional approximations," CEPREMAP Working Papers (Couverture Orange) 9821, CEPREMAP.
    14. M. Ali Khan, 2007. "Perfect Competition," PIDE-Working Papers 2007:15, Pakistan Institute of Development Economics.
    15. Burke, Jonathan L., 2000. "General Equilibrium When Economic Growth Exceeds Discounting," Journal of Economic Theory, Elsevier, vol. 94(2), pages 141-162, October.
    16. Elvio Accinelli, 1999. "Existence of GE: Are the Cases of Non Existence a Cause of Serious Worry?," Documentos de Trabajo (working papers) 0999, Department of Economics - dECON.
    17. Jiang, Wang, 1996. "The term structure of interest rates in a pure exchange economy with heterogeneous investors," Journal of Financial Economics, Elsevier, vol. 41(1), pages 75-110, May.
    18. Araujo, Aloisio & Gama, Juan Pablo & Novinski, Rodrigo & Pascoa, Mario R., 2019. "Endogenous discounting, wariness, and efficient capital taxation," Journal of Economic Theory, Elsevier, vol. 183(C), pages 520-545.
    19. Magill, Michael & Quinzii, Martine, 1996. "Incomplete markets over an infinite horizon: Long-lived securities and speculative bubbles," Journal of Mathematical Economics, Elsevier, vol. 26(1), pages 133-170.
    20. Riedel, Frank, 2001. "Existence of Arrow-Radner Equilibrium with Endogenously Complete Markets under Incomplete Information," Journal of Economic Theory, Elsevier, vol. 97(1), pages 109-122, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:mateco:v:25:y:1996:i:4:p:381-390. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jmateco .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.