IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v229y2025icp96-128.html
   My bibliography  Save this article

Efficient approximation of global population dynamic models through statistical inference using local data

Author

Listed:
  • Karim, Md Aktar Ul
  • Shaikh, Ruqaiya Altaf
  • Bhowmick, Amiya Ranjan

Abstract

Biological growth curves are pivotal in predicting natural growth across disciplines, typically analyzed using nonlinear least squares or maximum likelihood methods. Bhowmick et al. (2014) introduced the interval-specific rate of parameters (ISRP) for growth equations, improving the estimation of relative growth rate (RGR) and model selection accuracy. Despite its effectiveness, computing these model-specific RGR estimates involves complex calculations and lacks explicit expressions for many nonlinear models. Also, for highly nonlinear models and non-monotonic data where the parameters are non-linearly related, the computation of interval estimates is almost impossible and may suffer from significant approximation errors. So, the need for a more efficient computation method for ISRP remains a significant challenge in growth studies. In this article, we propose a computational approach to obtain interval estimates of parameters based on the maximum likelihood estimation method. The likelihood function is maximized using the data on smaller intervals. Our study underscores the importance of an efficient ISRP computation technique, providing a more stable, unbiased, and normally distributed estimator. The most important advantage is that it can be implemented using existing optimizers in software packages efficiently, therefore, giving more accessibility to the practitioners. Both simulation studies and real data analysis have been carried out to validate the proposed estimation process. Additionally, its applicability to non-monotonic growth profiles and its robustness in handling highly non-linear growth equations highlight its versatility. We also developed a web application GpEM-R which is freely available for researchers and practitioners to analyze growth data.

Suggested Citation

  • Karim, Md Aktar Ul & Shaikh, Ruqaiya Altaf & Bhowmick, Amiya Ranjan, 2025. "Efficient approximation of global population dynamic models through statistical inference using local data," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 229(C), pages 96-128.
  • Handle: RePEc:eee:matcom:v:229:y:2025:i:c:p:96-128
    DOI: 10.1016/j.matcom.2024.09.024
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475424003793
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2024.09.024?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Michael G. Kenward, 1987. "A Method for Comparing Profiles of Repeated Measurements," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 36(3), pages 296-308, November.
    2. Karim, Md Aktar Ul & Aithal, Vikram & Bhowmick, Amiya Ranjan, 2023. "Random variation in model parameters: A comprehensive review of stochastic logistic growth equation," Ecological Modelling, Elsevier, vol. 484(C).
    3. Karim, Md Aktar Ul & Bhagat, Supriya Ramdas & Bhowmick, Amiya Ranjan, 2022. "Empirical detection of parameter variation in growth curve models using interval specific estimators," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
    4. Alexander Shapiro & Jos Berge, 2002. "Statistical inference of minimum rank factor analysis," Psychometrika, Springer;The Psychometric Society, vol. 67(1), pages 79-94, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Karim, Md Aktar Ul & Bhagat, Supriya Ramdas & Bhowmick, Amiya Ranjan, 2022. "Empirical detection of parameter variation in growth curve models using interval specific estimators," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
    2. W. J. Krzanowski, 1999. "Antedependence models in the analysis of multi-group high-dimensional data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 26(1), pages 59-67.
    3. Anastasiou, Andreas, 2017. "Bounds for the normal approximation of the maximum likelihood estimator from m-dependent random variables," Statistics & Probability Letters, Elsevier, vol. 129(C), pages 171-181.
    4. Denter, Philipp & Sisak, Dana, 2015. "Do polls create momentum in political competition?," Journal of Public Economics, Elsevier, vol. 130(C), pages 1-14.
    5. Salgado Alfredo, 2018. "Incomplete Information and Costly Signaling in College Admissions," Working Papers 2018-23, Banco de México.
    6. Albrecht, James & Anderson, Axel & Vroman, Susan, 2010. "Search by committee," Journal of Economic Theory, Elsevier, vol. 145(4), pages 1386-1407, July.
    7. Blier-Wong, Christopher & Cossette, Hélène & Marceau, Etienne, 2023. "Risk aggregation with FGM copulas," Insurance: Mathematics and Economics, Elsevier, vol. 111(C), pages 102-120.
    8. Simon Bruhn & Thomas Grebel & Lionel Nesta, 2023. "The fallacy in productivity decomposition," Journal of Evolutionary Economics, Springer, vol. 33(3), pages 797-835, July.
    9. Wim J. van der Linden, 2019. "Lord’s Equity Theorem Revisited," Journal of Educational and Behavioral Statistics, , vol. 44(4), pages 415-430, August.
    10. Simar, Léopold & Wilson, Paul, 2022. "Modern Tools for Evaluating the Performance of Health-Care Providers," LIDAM Discussion Papers ISBA 2022006, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    11. Baey, Charlotte & Didier, Anne & Lemaire, Sébastien & Maupas, Fabienne & Cournède, Paul-Henry, 2013. "Modelling the interindividual variability of organogenesis in sugar beet populations using a hierarchical segmented model," Ecological Modelling, Elsevier, vol. 263(C), pages 56-63.
    12. Tasche, Dirk, 2013. "Bayesian estimation of probabilities of default for low default portfolios," Journal of Risk Management in Financial Institutions, Henry Stewart Publications, vol. 6(3), pages 302-326, July.
    13. Diers, Dorothea & Linde, Marc & Hahn, Lukas, 2016. "Addendum to ‘The multi-year non-life insurance risk in the additive reserving model’ [Insurance Math. Econom. 52(3) (2013) 590–598]: Quantification of multi-year non-life insurance risk in chain ladde," Insurance: Mathematics and Economics, Elsevier, vol. 67(C), pages 187-199.
    14. Li, Erning & Pourahmadi, Mohsen, 2013. "An alternative REML estimation of covariance matrices in linear mixed models," Statistics & Probability Letters, Elsevier, vol. 83(4), pages 1071-1077.
    15. Anastasiou, Andreas, 2017. "Bounds for the normal approximation of the maximum likelihood estimator from m -dependent random variables," LSE Research Online Documents on Economics 83635, London School of Economics and Political Science, LSE Library.
    16. Rauf Ahmad, M. & Werner, C. & Brunner, E., 2008. "Analysis of high-dimensional repeated measures designs: The one sample case," Computational Statistics & Data Analysis, Elsevier, vol. 53(2), pages 416-427, December.
    17. Hirschberg, Joe & Lye, Jenny, 2017. "Inverting the indirect—The ellipse and the boomerang: Visualizing the confidence intervals of the structural coefficient from two-stage least squares," Journal of Econometrics, Elsevier, vol. 199(2), pages 173-183.
    18. Serguei Kaniovski & Alexander Zaigraev, 2018. "The probability of majority inversion in a two-stage voting system with three states," Theory and Decision, Springer, vol. 84(4), pages 525-546, June.
    19. Carter, Christopher K. & Wong, Frederick & Kohn, Robert, 2011. "Constructing priors based on model size for nondecomposable Gaussian graphical models: A simulation based approach," Journal of Multivariate Analysis, Elsevier, vol. 102(5), pages 871-883, May.
    20. Andreas Hefti & Peiyao Shen, 2025. "Predicting the distribution of contest success under the illusion of proportionality," ECON - Working Papers 466, Department of Economics - University of Zurich.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:229:y:2025:i:c:p:96-128. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.