IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v229y2025icp525-538.html
   My bibliography  Save this article

Analysis and comparison of high-performance computing solvers for minimisation problems in signal processing

Author

Listed:
  • Cammarasana, Simone
  • Patané, Giuseppe

Abstract

Several physics and engineering applications involve the solution of a minimisation problem to compute an approximation of the input signal. Modern hardware and software use high-performance computing to solve problems and considerably reduce execution time. In this paper, different optimisation methods are compared and analysed for the solution of two classes of non-linear minimisation problems for signal approximation and denoising with different constraints and involving computationally expensive operations, i.e., (i) the global optimisers divide rectangle-local and the improved stochastic ranking evolution strategy, and (ii) the local optimisers principal axis, the Limited-memory Broyden, Fletcher, Goldfarb, Shanno, and the constrained optimisation by linear approximations. The proposed approximation and denoising minimisation problems are attractive due to their numerical and analytical properties, and their analysis is general enough to be extended to most signal-processing problems. As the main contribution and novelty, our analysis combines an efficient implementation of signal approximation and denoising on arbitrary domains, a comparison of the main optimisation methods and their high-performance computing implementations, and a scalability analysis of the main algebraic operations involved in the solution of the problem, such as the solution of linear systems and singular value decomposition. Our analysis is also general regarding the signal processing problem, variables, constraints (e.g., bounded, non-linear), domains (e.g., structured and unstructured grids, dimensionality), high-performance computing hardware (e.g., cloud computing, homogeneous vs. heterogeneous). Experimental tests are performed on the CINECA Marconi100 cluster at the 26th position in the “top500” list and consider several parameters, such as functional computation, convergence, execution time, and scalability. Our experimental tests are discussed on real-case applications, such as the reconstruction of the solution of the fluid flow field equation on an unstructured grid and the denoising of a satellite image affected by speckle noise. The experimental results show that principal axis is the best optimiser in terms of minima computation: the efficiency of the approximation is 38% with 256 processes, while the denoising has 46% with 32 processes.

Suggested Citation

  • Cammarasana, Simone & Patané, Giuseppe, 2025. "Analysis and comparison of high-performance computing solvers for minimisation problems in signal processing," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 229(C), pages 525-538.
  • Handle: RePEc:eee:matcom:v:229:y:2025:i:c:p:525-538
    DOI: 10.1016/j.matcom.2024.10.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475424003926
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2024.10.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Luis Rios & Nikolaos Sahinidis, 2013. "Derivative-free optimization: a review of algorithms and comparison of software implementations," Journal of Global Optimization, Springer, vol. 56(3), pages 1247-1293, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Christophe Gouel & Nicolas Legrand, 2017. "Estimating the Competitive Storage Model with Trending Commodity Prices," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 32(4), pages 744-763, June.
    2. Zhao, Jake, 2020. "Accounting for the corporate cash increase," European Economic Review, Elsevier, vol. 123(C).
    3. Breitmoser, Yves & Valasek, Justin, 2017. "A rationale for unanimity in committees," Discussion Papers, Research Unit: Economics of Change SP II 2017-308, WZB Berlin Social Science Center.
    4. Tavakol Aghaei, Vahid & Ağababaoğlu, Arda & Bawo, Biram & Naseradinmousavi, Peiman & Yıldırım, Sinan & Yeşilyurt, Serhat & Onat, Ahmet, 2023. "Energy optimization of wind turbines via a neural control policy based on reinforcement learning Markov chain Monte Carlo algorithm," Applied Energy, Elsevier, vol. 341(C).
    5. Pál, László & Sándor, Zsolt, 2023. "Comparing procedures for estimating random coefficient logit demand models with a special focus on obtaining global optima," International Journal of Industrial Organization, Elsevier, vol. 88(C).
    6. Qihong Feng & Kuankuan Wu & Jiyuan Zhang & Sen Wang & Xianmin Zhang & Daiyu Zhou & An Zhao, 2022. "Optimization of Well Control during Gas Flooding Using the Deep-LSTM-Based Proxy Model: A Case Study in the Baoshaceng Reservoir, Tarim, China," Energies, MDPI, vol. 15(7), pages 1-14, March.
    7. Luca Riboldi & Lars O. Nord, 2017. "Lifetime Assessment of Combined Cycles for Cogeneration of Power and Heat in Offshore Oil and Gas Installations," Energies, MDPI, vol. 10(6), pages 1-23, May.
    8. Ahmed, Rasel & Mahadzir, Shuhaimi & Ferdush, Jannatul & Matovu, Fahad & Mota-Babiloni, Adrián & Hafyan, Rendra Hakim, 2024. "Surrogate-assisted constrained hybrid particle swarm optimization algorithm for propane pre-cooled mixed refrigerant LNG process optimization," Energy, Elsevier, vol. 305(C).
    9. Khakifirooz, Marzieh & Fathi, Michel & Lee, I-Chen & Tseng, Sheng-Tsaing, 2023. "Neural ordinary differential equation for sequential optimal design of fatigue test under accelerated life test analysis," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    10. Gu, Ziyuan & Li, Yifan & Saberi, Meead & Rashidi, Taha H. & Liu, Zhiyuan, 2023. "Macroscopic parking dynamics and equitable pricing: Integrating trip-based modeling with simulation-based robust optimization," Transportation Research Part B: Methodological, Elsevier, vol. 173(C), pages 354-381.
    11. Khalid Mohammed Saffer Alzaidi & Oguz Bayat & Osman N. Uçan, 2018. "A Heuristic Approach for Optimal Planning and Operation of Distribution Systems," Journal of Optimization, Hindawi, vol. 2018, pages 1-19, June.
    12. Gandhi, Akhilesh & Zantye, Manali S. & Faruque Hasan, M.M., 2022. "Cryogenic energy storage: Standalone design, rigorous optimization and techno-economic analysis," Applied Energy, Elsevier, vol. 322(C).
    13. Cliff C Kerr & Salvador Dura-Bernal & Tomasz G Smolinski & George L Chadderdon & David P Wilson, 2018. "Optimization by Adaptive Stochastic Descent," PLOS ONE, Public Library of Science, vol. 13(3), pages 1-16, March.
    14. Vikse, Matias & Watson, Harry A.J. & Kim, Donghoi & Barton, Paul I. & Gundersen, Truls, 2020. "Optimization of a dual mixed refrigerant process using a nonsmooth approach," Energy, Elsevier, vol. 196(C).
    15. Kim, Donghoi & Hwang, Chulmin & Gundersen, Truls & Lim, Youngsub, 2019. "Process design and economic optimization of boil-off-gas re-liquefaction systems for LNG carriers," Energy, Elsevier, vol. 173(C), pages 1119-1129.
    16. Marti, Jan & Geissbühler, Lukas & Becattini, Viola & Haselbacher, Andreas & Steinfeld, Aldo, 2018. "Constrained multi-objective optimization of thermocline packed-bed thermal-energy storage," Applied Energy, Elsevier, vol. 216(C), pages 694-708.
    17. Zhongruo Wang & Krishnakumar Balasubramanian & Shiqian Ma & Meisam Razaviyayn, 2023. "Zeroth-order algorithms for nonconvex–strongly-concave minimax problems with improved complexities," Journal of Global Optimization, Springer, vol. 87(2), pages 709-740, November.
    18. Tamás Vinkó & Kitti Gelle, 2017. "Basin Hopping Networks of continuous global optimization problems," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 25(4), pages 985-1006, December.
    19. Priyam Das, 2021. "Recursive Modified Pattern Search on High-Dimensional Simplex : A Blackbox Optimization Technique," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 83(2), pages 440-483, November.
    20. Alena Vagaská & Miroslav Gombár & Ľuboslav Straka, 2022. "Selected Mathematical Optimization Methods for Solving Problems of Engineering Practice," Energies, MDPI, vol. 15(6), pages 1-22, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:229:y:2025:i:c:p:525-538. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.