IDEAS home Printed from https://ideas.repec.org/a/eee/juipol/v77y2022ics0957178722000467.html
   My bibliography  Save this article

Guiding electricity distribution system investments to improve service quality: A European study

Author

Listed:
  • Prettico, G.
  • Marinopoulos, A.
  • Vitiello, S.

Abstract

The transformation process for a more cost-effective electricity sector has also brought radical changes to distribution networks. In Europe, fundamental differences between distribution system operators (DSOs) might jeopardise the process by increasing present technological gaps. In this work, we identify those technological features having an higher impact on the quality of the supplied service. By focusing on the duration of electricity interruptions indicator, we provide statistical models that identify feasible technological options to improve DSOs performances. Our analysis is based on a subset of the non-confidential DSO Observatory project dataset counting almost 100 unbundled DSOs.

Suggested Citation

  • Prettico, G. & Marinopoulos, A. & Vitiello, S., 2022. "Guiding electricity distribution system investments to improve service quality: A European study," Utilities Policy, Elsevier, vol. 77(C).
  • Handle: RePEc:eee:juipol:v:77:y:2022:i:c:s0957178722000467
    DOI: 10.1016/j.jup.2022.101381
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0957178722000467
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jup.2022.101381?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pereira, Guillermo Ivan & Pereira da Silva, Patrícia & Cerqueira, Pedro André, 2020. "Electricity distribution incumbents' adaptation toward decarbonized and smarter grids: Evidence on the role market, regulatory, investment, and firm-level factors," Energy Policy, Elsevier, vol. 142(C).
    2. Kuiken, Dirk & Más, Heyd F., 2019. "Integrating demand side management into EU electricity distribution system operation: A Dutch example," Energy Policy, Elsevier, vol. 129(C), pages 153-160.
    3. Sappington, David E. M. & Pfeifenberger, Johannes P. & Hanser, Philip & Basheda, Gregory N., 2001. "The State of Performance-Based Regulation in the U.S. Electric Utility Industry," The Electricity Journal, Elsevier, vol. 14(8), pages 71-79, October.
    4. Ruester, Sophia & Schwenen, Sebastian & Batlle, Carlos & Pérez-Arriaga, Ignacio, 2014. "From distribution networks to smart distribution systems: Rethinking the regulation of European electricity DSOs," Utilities Policy, Elsevier, vol. 31(C), pages 229-237.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. de Mendonça, Mário Jorge Cardoso & Pereira, Amaro Olimpio & Bellido, Marlon Max H. & Medrano, Luis Alberto & Pessanha, José Francisco Moreira, 2023. "Service quality performance indicators for electricity distribution in Brazil," Utilities Policy, Elsevier, vol. 80(C).
    2. Víctor M. Garrido-Arévalo & Walter Gil-González & Oscar Danilo Montoya & Harold R. Chamorro & Jorge Mírez, 2023. "Efficient Allocation and Sizing the PV-STATCOMs in Electrical Distribution Grids Using Mixed-Integer Convex Approximation," Energies, MDPI, vol. 16(20), pages 1-19, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Karsten Neuhoff & Sophia Rüster & Sebastian Schwenen, 2015. "Power Market Design beyond 2020: Time to Revisit Key Elements?," Discussion Papers of DIW Berlin 1456, DIW Berlin, German Institute for Economic Research.
    2. Eid, Cherrelle & Codani, Paul & Perez, Yannick & Reneses, Javier & Hakvoort, Rudi, 2016. "Managing electric flexibility from Distributed Energy Resources: A review of incentives for market design," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 237-247.
    3. Abrardi, Laura & Cambini, Carlo, 2015. "Tariff regulation with energy efficiency goals," Energy Economics, Elsevier, vol. 49(C), pages 122-131.
    4. Mehdi Farsi & Aurelio Fetz & Massimo Filippini, 2007. "Benchmarking and Regulation in the Electricity Distribution Sector," CEPE Working paper series 07-54, CEPE Center for Energy Policy and Economics, ETH Zurich.
    5. Rancilio, G. & Rossi, A. & Falabretti, D. & Galliani, A. & Merlo, M., 2022. "Ancillary services markets in europe: Evolution and regulatory trade-offs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    6. Moura, Ricardo & Brito, Miguel Centeno, 2019. "Prosumer aggregation policies, country experience and business models," Energy Policy, Elsevier, vol. 132(C), pages 820-830.
    7. Chen, Ting & Vandendriessche, Frederik, 2023. "Enabling independent flexibility service providers to participate in electricity markets: A legal analysis of the Belgium case," Utilities Policy, Elsevier, vol. 81(C).
    8. Triebs, T.P. & Pollitt, M.G. & Kwoka, J.E., 2010. "The Direct Costs and Benefits of US Electric Utility Divestitures," Cambridge Working Papers in Economics 1049, Faculty of Economics, University of Cambridge.
    9. Cherrelle Eid & Rudi Hakvoort & Martin de Jong, 2016. "Global trends in the political economy of smart grids: A tailored perspective on 'smart' for grids in transition," WIDER Working Paper Series 022, World Institute for Development Economic Research (UNU-WIDER).
    10. Bartłomiej Mroczek & Paweł Pijarski, 2022. "Machine Learning in Operating of Low Voltage Future Grid," Energies, MDPI, vol. 15(15), pages 1-30, July.
    11. Nillesen, P.H.L., 2008. "The future of electricity distribution regulation : Lessons from international experience," Other publications TiSEM e80aca08-4ccd-4b06-99c0-3, Tilburg University, School of Economics and Management.
    12. Maarten Wolsink, 2020. "Framing in Renewable Energy Policies: A Glossary," Energies, MDPI, vol. 13(11), pages 1-31, June.
    13. Pedrini, Giulio & Cappiello, Giuseppe, 2022. "The impact of training on labour productivity in the European utilities sector: An empirical analysis," Utilities Policy, Elsevier, vol. 74(C).
    14. David P. Brown and David E. M. Sappington, 2018. "Optimal Procurement of Distributed Energy Resources," The Energy Journal, International Association for Energy Economics, vol. 0(Number 5).
    15. Thomas Pownall & Iain Soutar & Catherine Mitchell, 2021. "Re-Designing GB’s Electricity Market Design: A Conceptual Framework Which Recognises the Value of Distributed Energy Resources," Energies, MDPI, vol. 14(4), pages 1-26, February.
    16. Abdelfeteh Bitat, 2018. "Environmental regulation and eco-innovation: the Porter hypothesis refined," Eurasian Business Review, Springer;Eurasia Business and Economics Society, vol. 8(3), pages 299-321, September.
    17. Gert Brunekreeft & Roland Meyer, 2015. "Anreizregulierung bei Stromverteilnetzen: Effizienz versus Investitionen," Bremen Energy Working Papers 0021, Bremen Energy Research.
    18. Paul Neetzow & Roman Mendelevitch & Sauleh Siddiqui, 2018. "Modeling Coordination between Renewables and Grid: Policies to Mitigate Distribution Grid Constraints Using Residential PV-Battery Systems," Discussion Papers of DIW Berlin 1766, DIW Berlin, German Institute for Economic Research.
    19. Bellenbaum, Julia & Höckner, Jonas & Weber, Christoph, 2022. "Designing flexibility procurement markets for congestion management – investigating two-stage procurement auctions," Energy Economics, Elsevier, vol. 106(C).
    20. Hadush, Samson Yemane & Meeus, Leonardo, 2018. "DSO-TSO cooperation issues and solutions for distribution grid congestion management," Energy Policy, Elsevier, vol. 120(C), pages 610-621.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:juipol:v:77:y:2022:i:c:s0957178722000467. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.sciencedirect.com/journal/utilities-policy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.