IDEAS home Printed from https://ideas.repec.org/a/eee/jotrge/v126y2025ics096669232500122x.html
   My bibliography  Save this article

Securing power grids and charging infrastructure: Cyberattack resilience and vehicle-to-grid integration

Author

Listed:
  • Sayarshad, Hamid R.

Abstract

The increasing interconnectivity of power grids and electric vehicle (EV) charging stations exposes them to the ever-growing threat of cyberattacks. This paper proposes a multifaceted approach that addresses the interdependencies between power grids, charging stations, and EVs. We explore a new EV routing challenge that includes regulations for charging and vehicle-to-grid (V2G) discharging. We estimate charging demands by analyzing EV usage patterns, charging/discharging plans, charging station availability, and user preferences such as routing and driver anxiety. The study explores a new EV charging optimization scenario considering charging costs, traffic, travel time, and setup time. A vital aspect of the proposed model is its ability to facilitate bidirectional energy flow between EVs and the power grid. This strategy enhances grid stability and facilitates efficient energy management, with charging stations actively participating in load balancing, peak shaving, and grid stabilization during a cyberattack. Furthermore, we formulate a network interdiction problem that strategically removes specific links in the power network to prevent the spread of a cyberattack. The effectiveness of the proposed approach is evaluated through five case studies. The findings suggest that the proposed hybrid planning solution (Case 5) is the most effective strategy. It successfully achieves zero load-shedding, reduces the charging and discharging constraints for electric vehicles (EVs), and eliminates susceptible nodes.

Suggested Citation

  • Sayarshad, Hamid R., 2025. "Securing power grids and charging infrastructure: Cyberattack resilience and vehicle-to-grid integration," Journal of Transport Geography, Elsevier, vol. 126(C).
  • Handle: RePEc:eee:jotrge:v:126:y:2025:i:c:s096669232500122x
    DOI: 10.1016/j.jtrangeo.2025.104231
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096669232500122X
    Download Restriction: no

    File URL: https://libkey.io/10.1016/j.jtrangeo.2025.104231?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Sayarshad, Hamid R., 2025. "Coordinated routing, charging, and power grid for electric and hydrogen vehicles with renewable energy integration," Renewable Energy, Elsevier, vol. 243(C).
    2. Wang, Ying-Wei & Wang, Chuan-Ren, 2010. "Locating passenger vehicle refueling stations," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 46(5), pages 791-801, September.
    3. Csiszár, Csaba & Csonka, Bálint & Földes, Dávid & Wirth, Ervin & Lovas, Tamás, 2019. "Urban public charging station locating method for electric vehicles based on land use approach," Journal of Transport Geography, Elsevier, vol. 74(C), pages 173-180.
    4. Csiszár, Csaba & Csonka, Bálint & Földes, Dávid & Wirth, Ervin & Lovas, Tamás, 2020. "Location optimisation method for fast-charging stations along national roads," Journal of Transport Geography, Elsevier, vol. 88(C).
    5. Hamid R. Sayarshad & Vahid Mahmoodian & Nebojša Bojović, 2021. "Dynamic Inventory Routing and Pricing Problem with a Mixed Fleet of Electric and Conventional Urban Freight Vehicles," Sustainability, MDPI, vol. 13(12), pages 1-16, June.
    6. Zhu, Zhi-Hong & Gao, Zi-You & Zheng, Jian-Feng & Du, Hao-Ming, 2016. "Charging station location problem of plug-in electric vehicles," Journal of Transport Geography, Elsevier, vol. 52(C), pages 11-22.
    7. Sayarshad, Hamid R., 2025. "Equity-based vaccine delivery by drones: Optimizing distribution in disease-prone regions," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 195(C).
    8. Min Li & Hui Hou & Jufang Yu & Hao Geng & Ling Zhu & Yong Huang & Xianqiang Li, 2021. "Prediction of Power Outage Quantity of Distribution Network Users under Typhoon Disaster Based on Random Forest and Important Variables," Mathematical Problems in Engineering, Hindawi, vol. 2021, pages 1-14, January.
    9. Sayarshad, Hamid R. & Sattar, Shahram & Oliver Gao, H., 2020. "A scalable non-myopic atomic game for a smart parking mechanism," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 140(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Harasis, Salman & Khan, Irfan & Massoud, Ahmed, 2024. "Enabling large-scale integration of electric bus fleets in harsh environments: Possibilities, potentials, and challenges," Energy, Elsevier, vol. 300(C).
    2. Kim, Hyunjung & Kim, Dae-Wook & Kim, Man-Keun, 2022. "Economics of charging infrastructure for electric vehicles in Korea," Energy Policy, Elsevier, vol. 164(C).
    3. Zhou, Guangyou & Zhu, Zhiwei & Luo, Sumei, 2022. "Location optimization of electric vehicle charging stations: Based on cost model and genetic algorithm," Energy, Elsevier, vol. 247(C).
    4. Sanchari Deb & Kari Tammi & Karuna Kalita & Pinakeswar Mahanta, 2018. "Review of recent trends in charging infrastructure planning for electric vehicles," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 7(6), November.
    5. Sayarshad, Hamid R., 2025. "Coordinated routing, charging, and power grid for electric and hydrogen vehicles with renewable energy integration," Renewable Energy, Elsevier, vol. 243(C).
    6. Jefferson Morán & Esteban Inga, 2022. "Characterization of Load Centers for Electric Vehicles Based on Simulation of Urban Vehicular Traffic Using Geo-Referenced Environments," Sustainability, MDPI, vol. 14(6), pages 1-20, March.
    7. Maria-Simona Răboacă & Irina Băncescu & Vasile Preda & Nicu Bizon, 2020. "An Optimization Model for the Temporary Locations of Mobile Charging Stations," Mathematics, MDPI, vol. 8(3), pages 1-20, March.
    8. Faping Wang & Rui Chen & Lixin Miao & Peng Yang & Bin Ye, 2019. "Location Optimization of Electric Vehicle Mobile Charging Stations Considering Multi-Period Stochastic User Equilibrium," Sustainability, MDPI, vol. 11(20), pages 1-19, October.
    9. Hu, Dingding & Zhou, Kaile & Lu, Xinhui, 2025. "A bi-level programming model for inter-city charging station location with heterogeneous range anxiety," Energy, Elsevier, vol. 316(C).
    10. Gönül, Ömer & Duman, A. Can & Güler, Önder, 2024. "A comprehensive framework for electric vehicle charging station siting along highways using weighted sum method," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    11. Metais, M.O. & Jouini, O. & Perez, Y. & Berrada, J. & Suomalainen, E., 2022. "Too much or not enough? Planning electric vehicle charging infrastructure: A review of modeling options," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    12. Du, Zhili & Zheng, Lirong & Lin, Boqiang, 2024. "Influence of charging stations accessibility on charging stations utilization," Energy, Elsevier, vol. 298(C).
    13. Park, Junseok & Moon, Ilkyeong, 2023. "A facility location problem in a mixed duopoly on networks," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 175(C).
    14. Yang, Woosuk, 2018. "A user-choice model for locating congested fast charging stations," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 110(C), pages 189-213.
    15. He, Sylvia Y. & Kuo, Yong-Hong & Sun, Ka Kit, 2022. "The spatial planning of public electric vehicle charging infrastructure in a high-density city using a contextualised location-allocation model," Transportation Research Part A: Policy and Practice, Elsevier, vol. 160(C), pages 21-44.
    16. Golsefidi, Atefeh Hemmati & Hipolito, F. & Pereira, Francisco Câmara & Samaranayake, Samitha, 2025. "Incremental expansion of large scale fixed and mobile charging infrastructure in stochastic environments: A novel graph-based Benders decomposition approach," Applied Energy, Elsevier, vol. 380(C).
    17. Vladimír Konečný & Jozef Gnap & Tomáš Settey & František Petro & Tomáš Skrúcaný & Tomasz Figlus, 2020. "Environmental Sustainability of the Vehicle Fleet Change in Public City Transport of Selected City in Central Europe," Energies, MDPI, vol. 13(15), pages 1-23, July.
    18. Cai, Yanpeng & Applegate, Scott & Yue, Wencong & Cai, Jianying & Wang, Xuan & Liu, Gengyuan & Li, Chunhui, 2017. "A hybrid life cycle and multi-criteria decision analysis approach for identifying sustainable development strategies of Beijing's taxi fleet," Energy Policy, Elsevier, vol. 100(C), pages 314-325.
    19. Chung, Sung Hoon & Kwon, Changhyun, 2015. "Multi-period planning for electric car charging station locations: A case of Korean Expressways," European Journal of Operational Research, Elsevier, vol. 242(2), pages 677-687.
    20. Zeinal Hamadani, Ali & Abouei Ardakan, Mostafa & Rezvan, Taghi & Honarmandian, Mohammad Mehran, 2013. "Location-allocation problem for intra-transportation system in a big company by using meta-heuristic algorithm," Socio-Economic Planning Sciences, Elsevier, vol. 47(4), pages 309-317.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jotrge:v:126:y:2025:i:c:s096669232500122x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/journal-of-transport-geography .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.