IDEAS home Printed from https://ideas.repec.org/a/eee/jotrge/v123y2025ics0966692325000213.html
   My bibliography  Save this article

Madina Python package: Scalable urban network analysis for modeling pedestrian and bicycle trips in cities

Author

Listed:
  • Sevtsuk, Andres
  • Alhassan, Abdulaziz

Abstract

There is growing interest around sustainable mobility in cities, particularly pedestrian mobility, but methodological limitations and scarcity of software tools to analyze the dynamics between pedestrians and urban land uses have limited both research on and policy-relevant planning applications of pedestrian modeling. To address these challenges, we introduce Madina, a new Python package for modeling pedestrian and cycling trips along spatial networks in urban environments. The package enables managing and visualizing spatial network datasets and implements a set of Urban Network Analysis (UNA) tools for measuring pedestrian accessibility to given destination facilities, for identifying critical walking routes between origin-destination types, and for estimating pedestrian flows over network segments. While some of the methods we use for modeling pedestrian trips along networks have been previously implemented in desktop software plugin-ins, such as ArcGIS or Rhinoceros 3D, Madina introduces three new capabilities to researchers and practitioners. First, it incorporates innovative algorithms that enable computationally expensive pedestrian routing assignments to be scaled to larger geographic areas than previously possible the UNA Rhinoceros environment. Second, an implementation in Python offers new and powerful opportunities to automate various types of pedestrian and bic modeling steps through scripts and allows outputs to be connected with other types of analytic tasks, not available in desktop software applications. Enabling complex spatial analysis procedures to be replicated in automated ways contributes to verifiability, reproducibility, and the development of more robust urban science. And third, it presents the first end-to-end implementation of urban network analysis methods in an open-source Python environment, where no proprietary software is needed. We demonstrate the application of Madina tools in New York City, one of the largest pedestrian networks in the world.

Suggested Citation

  • Sevtsuk, Andres & Alhassan, Abdulaziz, 2025. "Madina Python package: Scalable urban network analysis for modeling pedestrian and bicycle trips in cities," Journal of Transport Geography, Elsevier, vol. 123(C).
  • Handle: RePEc:eee:jotrge:v:123:y:2025:i:c:s0966692325000213
    DOI: 10.1016/j.jtrangeo.2025.104130
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0966692325000213
    Download Restriction: no

    File URL: https://libkey.io/10.1016/j.jtrangeo.2025.104130?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Boeing, Geoff, 2017. "OSMnx: New Methods for Acquiring, Constructing, Analyzing, and Visualizing Complex Street Networks," SocArXiv q86sd, Center for Open Science.
    2. Andres Sevtsuk & Rounaq Basu & Bahij Chancey, 2021. "We shape our buildings, but do they then shape us? A longitudinal analysis of pedestrian flows and development activity in Melbourne," PLOS ONE, Public Library of Science, vol. 16(9), pages 1-23, September.
    3. Jin Y. Yen, 1971. "Finding the K Shortest Loopless Paths in a Network," Management Science, INFORMS, vol. 17(11), pages 712-716, July.
    4. repec:osf:socarx:q86sd_v1 is not listed on IDEAS
    5. Clifton, Kelly J. & Singleton, Patrick A. & Muhs, Christopher D. & Schneider, Robert J., 2016. "Development of destination choice models for pedestrian travel," Transportation Research Part A: Policy and Practice, Elsevier, vol. 94(C), pages 255-265.
    6. Andres Sevtsuk, 2021. "Estimating Pedestrian Flows on Street Networks," Journal of the American Planning Association, Taylor & Francis Journals, vol. 87(4), pages 512-526, October.
    7. Gerlinde Grasser & Delfien Dyck & Sylvia Titze & Willibald Stronegger, 2013. "Objectively measured walkability and active transport and weight-related outcomes in adults: a systematic review," International Journal of Public Health, Springer;Swiss School of Public Health (SSPH+), vol. 58(4), pages 615-625, August.
    8. David L. Huff, 1963. "A Probabilistic Analysis of Shopping Center Trade Areas," Land Economics, University of Wisconsin Press, vol. 39(1), pages 81-90.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Andres Sevtsuk & Rounaq Basu & Bahij Chancey, 2021. "We shape our buildings, but do they then shape us? A longitudinal analysis of pedestrian flows and development activity in Melbourne," PLOS ONE, Public Library of Science, vol. 16(9), pages 1-23, September.
    2. Lin, Jie & Cromley, Gordon, 2023. "Using the transportation problem to build a congestion/threshold constrained spatial accessibility model," Journal of Transport Geography, Elsevier, vol. 112(C).
    3. Gordon Cromley & Jie Lin, 2023. "Examining the interplay between racial segregation patterns and access to hospital care," Environment and Planning B, , vol. 50(1), pages 117-129, January.
    4. Winston Yap & Jiat-Hwee Chang & Filip Biljecki, 2023. "Incorporating networks in semantic understanding of streetscapes: Contextualising active mobility decisions," Environment and Planning B, , vol. 50(6), pages 1416-1437, July.
    5. R. Lewis & P. Corcoran, 2022. "Finding fixed-length circuits and cycles in undirected edge-weighted graphs: an application with street networks," Journal of Heuristics, Springer, vol. 28(3), pages 259-285, June.
    6. Paul Cheshire & Christian Hilber & Piero Montebruno & Rosa Sanchis-Guarner, 2018. "Take Me to the Centre of Your Town! Using Micro-geographical Data to Identify Town Centres," CESifo Economic Studies, CESifo Group, vol. 64(2), pages 255-291.
    7. Chahine, Ricardo & Duarte, Jorge & Gkritza, Konstantina, 2025. "Effect of protected bike lanes on bike-sharing ridership: A New York City case study," Journal of Transport Geography, Elsevier, vol. 123(C).
    8. Xianmin Wang & Shuwang Wu & Zixiang Zhao & Haixiang Guo & Wenxue Chen, 2025. "Optimization of emergency rescue routes after a violent earthquake," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 121(4), pages 4585-4613, March.
    9. Sohyun Park & Keumsook Lee, 2021. "Examining the Impact of E-Commerce Growth on the Spatial Distribution of Fashion and Beauty Stores in Seoul," Sustainability, MDPI, vol. 13(9), pages 1-20, May.
    10. Huili Zhang & Yinfeng Xu & Xingang Wen, 2015. "Optimal shortest path set problem in undirected graphs," Journal of Combinatorial Optimization, Springer, vol. 29(3), pages 511-530, April.
    11. Matteo Böhm & Mirco Nanni & Luca Pappalardo, 2022. "Gross polluters and vehicle emissions reduction," Nature Sustainability, Nature, vol. 5(8), pages 699-707, August.
    12. Shah, Nitesh R. & Ziedan, Abubakr & Brakewood, Candace & Cherry, Christopher R., 2023. "Shared e-scooter service providers with large fleet size have a competitive advantage: Findings from e-scooter demand and supply analysis of Nashville, Tennessee," Transportation Research Part A: Policy and Practice, Elsevier, vol. 178(C).
    13. Daria Dzyabura & Srikanth Jagabathula, 2018. "Offline Assortment Optimization in the Presence of an Online Channel," Management Science, INFORMS, vol. 64(6), pages 2767-2786, June.
    14. Su Kye & Keeho Park, 2014. "Health-related determinants of happiness in Korean adults," International Journal of Public Health, Springer;Swiss School of Public Health (SSPH+), vol. 59(5), pages 731-738, October.
    15. Kajosaari, Anna & Hasanzadeh, Kamyar & Kyttä, Marketta, 2019. "Residential dissonance and walking for transport," Journal of Transport Geography, Elsevier, vol. 74(C), pages 134-144.
    16. Eszter Baranyai, 2023. "The Socio-Economic Status of Neighbourhoods and Access to Early Childhood Education," Child Indicators Research, Springer;The International Society of Child Indicators (ISCI), vol. 16(3), pages 1019-1048, June.
    17. Lorenzo Barbieri & Roberto D’Autilia & Paola Marrone & Ilaria Montella, 2023. "Graph Representation of the 15-Minute City: A Comparison between Rome, London, and Paris," Sustainability, MDPI, vol. 15(4), pages 1-14, February.
    18. Miotti, Marco & Needell, Zachary A. & Jain, Rishee K., 2023. "The impact of urban form on daily mobility demand and energy use: Evidence from the United States," Applied Energy, Elsevier, vol. 339(C).
    19. Cao, Pengliang & Zheng, Yujing & Yuen, Kum Fai & Ji, Yuxiong, 2023. "Inter-terminal transportation for an offshore port integrating an inland container depot," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 178(C).
    20. Melchiori, Anna & Sgalambro, Antonino, 2020. "A branch and price algorithm to solve the Quickest Multicommodity k-splittable Flow Problem," European Journal of Operational Research, Elsevier, vol. 282(3), pages 846-857.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jotrge:v:123:y:2025:i:c:s0966692325000213. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/journal-of-transport-geography .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.