IDEAS home Printed from https://ideas.repec.org/a/eee/jotrge/v118y2024ics0966692324001157.html
   My bibliography  Save this article

A spatial statistical approach to estimate bus stop demand using GIS-processed data

Author

Listed:
  • Montero-Lamas, Yaiza
  • Fernández-Casal, Rubén
  • Varela-García, Francisco-Alberto
  • Orro, Alfonso
  • Novales, Margarita

Abstract

This study integrates the fields of geography, urban transit planning, and statistical learning to develop a sophisticated methodology for predicting bus demand at the stop level. It uses a Generalized Additive Model that captures non-linear relationships and incorporates spatial dependence, improving traditional methods. It showcases a high predictive capacity with a pseudo R-squared of 0.79 during its validation, ensuring substantial explanatory power for new observations. A large number of variables, including land-use characteristics, socioeconomic factors, and transit supply, are analysed. These widely available predictors facilitate the transferability of the methodology to other urban areas. Transit supply predictor considers the number of annual trips per stop and area as well as the location of stops along the lines that serve them. GIS processing of the data allows the calculation of variables within the areas of influence of each stop, obtained by following the walkable street network. For the case study, the presence of universities, hospitals, and lodgings areas, as well as inhabitants and ratio of bus trips show a positive impact on bus demand. This geo-analysis process employs accurate disaggregated data, such as information on uses in each building, as well as methods for assigning socioeconomic information from local areas to residential buildings. This study highlights the complex relationship between the location of transit network stops, both along the bus line and in terms of geographical proximity, their transit supply, and its surrounding factors. The results indicate that there is spatial dependence for stops less than 1.15 km apart. The developed methodology provides reliable information to transit network planners for decision making. Specifically, this proposed methodology can contribute to designing new routes, optimizing stop locations, and estimating the impact of changes in the transit network or urban planning on bus demand. All these improvement measures promote sustainable urban mobility, consequently fostering environmental and social benefits.

Suggested Citation

  • Montero-Lamas, Yaiza & Fernández-Casal, Rubén & Varela-García, Francisco-Alberto & Orro, Alfonso & Novales, Margarita, 2024. "A spatial statistical approach to estimate bus stop demand using GIS-processed data," Journal of Transport Geography, Elsevier, vol. 118(C).
  • Handle: RePEc:eee:jotrge:v:118:y:2024:i:c:s0966692324001157
    DOI: 10.1016/j.jtrangeo.2024.103906
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0966692324001157
    Download Restriction: no

    File URL: https://libkey.io/10.1016/j.jtrangeo.2024.103906?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Marques, Samuel de França & Pitombo, Cira Souza, 2023. "Local modeling as a solution to the lack of stop-level ridership data," Journal of Transport Geography, Elsevier, vol. 112(C).
    2. Chakrabarti, Sandip, 2015. "The demand for reliable transit service: New evidence using stop level data from the Los Angeles Metro bus system," Journal of Transport Geography, Elsevier, vol. 48(C), pages 154-164.
    3. Ahmed El-Geneidy & Michael Grimsrud & Rania Wasfi & Paul Tétreault & Julien Surprenant-Legault, 2014. "New evidence on walking distances to transit stops: identifying redundancies and gaps using variable service areas," Transportation, Springer, vol. 41(1), pages 193-210, January.
    4. Chakour, Vincent & Eluru, Naveen, 2016. "Examining the influence of stop level infrastructure and built environment on bus ridership in Montreal," Journal of Transport Geography, Elsevier, vol. 51(C), pages 205-217.
    5. Cui, Boer & DeWeese, James & Wu, Hao & King, David A. & Levinson, David & El-Geneidy, Ahmed, 2022. "All ridership is local: Accessibility, competition, and stop-level determinants of daily bus boardings in Portland, Oregon," Journal of Transport Geography, Elsevier, vol. 99(C).
    6. Simon N. Wood, 2008. "Fast stable direct fitting and smoothness selection for generalized additive models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 70(3), pages 495-518, July.
    7. Amoroso, Salvatore & Migliore, Marco & Catalano, Mario & Galatioto, Fabio, 2010. "A demand-based methodology for planning the bus network of a small or medium town," European Transport \ Trasporti Europei, ISTIEE, Institute for the Study of Transport within the European Economic Integration, issue 44, pages 41-56.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cui, Boer & DeWeese, James & Wu, Hao & King, David A. & Levinson, David & El-Geneidy, Ahmed, 2022. "All ridership is local: Accessibility, competition, and stop-level determinants of daily bus boardings in Portland, Oregon," Journal of Transport Geography, Elsevier, vol. 99(C).
    2. Marques, Samuel de França & Pitombo, Cira Souza, 2023. "Local modeling as a solution to the lack of stop-level ridership data," Journal of Transport Geography, Elsevier, vol. 112(C).
    3. Lyons, Torrey & Ewing, Reid & Tian, Guang, 2025. "Coverage vs frequency: Is spatial coverage or temporal frequency more impactful on transit ridership?," Journal of Transport Geography, Elsevier, vol. 122(C).
    4. Lijie Yu & Mengying Cui & Shian Dai, 2023. "Deviation of peak hours for metro stations based on least square support vector machine," PLOS ONE, Public Library of Science, vol. 18(9), pages 1-18, September.
    5. Boisjoly, Geneviève & Serra, Bernardo & Oliveira, Gabriel T. & El-Geneidy, Ahmed, 2020. "Accessibility measurements in São Paulo, Rio de Janeiro, Curitiba and Recife, Brazil," Journal of Transport Geography, Elsevier, vol. 82(C).
    6. Sarker, Rumana Islam & Kaplan, Sigal & Mailer, Markus & Timmermans, Harry J.P., 2019. "Applying affective event theory to explain transit users’ reactions to service disruptions," Transportation Research Part A: Policy and Practice, Elsevier, vol. 130(C), pages 593-605.
    7. Chandra, Shailesh & Jimenez, Jose & Radhakrishnan, Ramalingam, 2017. "Accessibility evaluations for nighttime walking and bicycling for low-income shift workers," Journal of Transport Geography, Elsevier, vol. 64(C), pages 97-108.
    8. Yu, Haitao & Peng, Zhong-Ren, 2019. "Exploring the spatial variation of ridesourcing demand and its relationship to built environment and socioeconomic factors with the geographically weighted Poisson regression," Journal of Transport Geography, Elsevier, vol. 75(C), pages 147-163.
    9. Longhi, Christian & Musolesi, Antonio & Baumont, Catherine, 2014. "Modeling structural change in the European metropolitan areas during the process of economic integration," Economic Modelling, Elsevier, vol. 37(C), pages 395-407.
    10. Strasak, Alexander M. & Umlauf, Nikolaus & Pfeiffer, Ruth M. & Lang, Stefan, 2011. "Comparing penalized splines and fractional polynomials for flexible modelling of the effects of continuous predictor variables," Computational Statistics & Data Analysis, Elsevier, vol. 55(4), pages 1540-1551, April.
    11. Xue, Yuan & Yin, Xiangrong & Jiang, Xiaolin, 2016. "Ensemble sufficient dimension folding methods for analyzing matrix-valued data," Computational Statistics & Data Analysis, Elsevier, vol. 103(C), pages 193-205.
    12. Merkebe Getachew Demissie & Lina Kattan, 2022. "Understanding the temporal and spatial interactions between transit ridership and urban land-use patterns: an exploratory study," Public Transport, Springer, vol. 14(2), pages 385-417, June.
    13. Ingvardson, Jesper Bláfoss & Nielsen, Otto Anker, 2018. "How urban density, network topology and socio-economy influence public transport ridership: Empirical evidence from 48 European metropolitan areas," Journal of Transport Geography, Elsevier, vol. 72(C), pages 50-63.
    14. Tu, Wei & Cao, Rui & Yue, Yang & Zhou, Baoding & Li, Qiuping & Li, Qingquan, 2018. "Spatial variations in urban public ridership derived from GPS trajectories and smart card data," Journal of Transport Geography, Elsevier, vol. 69(C), pages 45-57.
    15. Marra, Giampiero & Wood, Simon N., 2011. "Practical variable selection for generalized additive models," Computational Statistics & Data Analysis, Elsevier, vol. 55(7), pages 2372-2387, July.
    16. Vale, David S. & Viana, Cláudia M. & Pereira, Mauro, 2018. "The extended node-place model at the local scale: Evaluating the integration of land use and transport for Lisbon's subway network," Journal of Transport Geography, Elsevier, vol. 69(C), pages 282-293.
    17. Jean-Philippe Meloche & Vincent Trotignon & François Vaillancourt, 2021. "Densification ou prolongement des réseaux de transport structurants ? Une recension des écrits sur les coûts et les bénéfices attendus," CIRANO Project Reports 2020rp-28, CIRANO.
    18. Azad, Mojdeh & Abdelqader, Dua & Taboada, Luis M. & Cherry, Christopher R., 2021. "Walk-to-transit demand estimation methods applied at the parcel level to improve pedestrian infrastructure investment," Journal of Transport Geography, Elsevier, vol. 92(C).
    19. Marchetti, Yuliya & Nguyen, Hai & Braverman, Amy & Cressie, Noel, 2018. "Spatial data compression via adaptive dispersion clustering," Computational Statistics & Data Analysis, Elsevier, vol. 117(C), pages 138-153.
    20. David, Quentin & Kilani, Moez, 2022. "Transport policies in polycentric cities," Transportation Research Part A: Policy and Practice, Elsevier, vol. 166(C), pages 101-117.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jotrge:v:118:y:2024:i:c:s0966692324001157. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/journal-of-transport-geography .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.