IDEAS home Printed from https://ideas.repec.org/a/eee/jomega/v73y2017icp60-78.html
   My bibliography  Save this article

Production stage allocation problem in large corporations

Author

Listed:
  • Zhen, Lu
  • Zhuge, Dan
  • Zhu, Sheng-Lei

Abstract

This paper studies a strategic-level decision problem on assigning production stages to geographically distributed subsidiaries in a large corporation so as to minimize the fixed cost and the expected value of the production/transportation costs under stochastic demands of customers. The influence of the economies and diseconomies of scale on unit production cost is considered. A nonlinear mixed integer programming model is designed for this problem. A local branching based solution method and a particle swarm optimization based solution method are developed for solving the model. Computational tests on real world data of Shanghai Volkswagen Auto Corp. are conducted. The results show that the proposed model can save about 2.5% of its revenue by comparing with the current decisions.

Suggested Citation

  • Zhen, Lu & Zhuge, Dan & Zhu, Sheng-Lei, 2017. "Production stage allocation problem in large corporations," Omega, Elsevier, vol. 73(C), pages 60-78.
  • Handle: RePEc:eee:jomega:v:73:y:2017:i:c:p:60-78
    DOI: 10.1016/j.omega.2016.11.009
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0305048316302171
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.omega.2016.11.009?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. M. Avriel & A. C. Williams, 1970. "The Value of Information and Stochastic Programming," Operations Research, INFORMS, vol. 18(5), pages 947-954, October.
    2. Georgiadis, Michael C. & Tsiakis, Panagiotis & Longinidis, Pantelis & Sofioglou, Maria K., 2011. "Optimal design of supply chain networks under uncertain transient demand variations," Omega, Elsevier, vol. 39(3), pages 254-272, June.
    3. Jabbarzadeh, Armin & Fahimnia, Behnam & Seuring, Stefan, 2014. "Dynamic supply chain network design for the supply of blood in disasters: A robust model with real world application," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 70(C), pages 225-244.
    4. Dong, Lingxiu & Kouvelis, Panos & Su, Ping, 2014. "Operational hedging strategies and competitive exposure to exchange rates," International Journal of Production Economics, Elsevier, vol. 153(C), pages 215-229.
    5. Klibi, Walid & Martel, Alain, 2012. "Scenario-based Supply Chain Network risk modeling," European Journal of Operational Research, Elsevier, vol. 223(3), pages 644-658.
    6. Özceylan, Eren & Paksoy, Turan & Bektaş, Tolga, 2014. "Modeling and optimizing the integrated problem of closed-loop supply chain network design and disassembly line balancing," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 61(C), pages 142-164.
    7. Longinidis, Pantelis & Georgiadis, Michael C., 2014. "Integration of sale and leaseback in the optimal design of supply chain networks," Omega, Elsevier, vol. 47(C), pages 73-89.
    8. Wang, Shuaian & Liu, Zhiyuan & Meng, Qiang, 2015. "Segment-based alteration for container liner shipping network design," Transportation Research Part B: Methodological, Elsevier, vol. 72(C), pages 128-145.
    9. Da Lu & Fatma Gzara & Samir Elhedhli, 2014. "Facility location with economies and diseconomies of scale: models and column generation heuristics," IISE Transactions, Taylor & Francis Journals, vol. 46(6), pages 585-600, June.
    10. Farahani, Reza Zanjirani & Rezapour, Shabnam & Drezner, Tammy & Fallah, Samira, 2014. "Competitive supply chain network design: An overview of classifications, models, solution techniques and applications," Omega, Elsevier, vol. 45(C), pages 92-118.
    11. Devika, K. & Jafarian, A. & Nourbakhsh, V., 2014. "Designing a sustainable closed-loop supply chain network based on triple bottom line approach: A comparison of metaheuristics hybridization techniques," European Journal of Operational Research, Elsevier, vol. 235(3), pages 594-615.
    12. Nagurney, Anna & Yu, Min & Floden, Jonas & Nagurney, Ladimer S., 2014. "Supply chain network competition in time-sensitive markets," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 70(C), pages 112-127.
    13. Wang, Shuaian & Liu, Zhiyuan & Bell, Michael G.H., 2015. "Profit-based maritime container assignment models for liner shipping networks," Transportation Research Part B: Methodological, Elsevier, vol. 72(C), pages 59-76.
    14. Tang, Lixin & Zhao, Jiao & Liu, Jiyin, 2014. "Modeling and solution of the joint quay crane and truck scheduling problem," European Journal of Operational Research, Elsevier, vol. 236(3), pages 978-990.
    15. Klibi, Walid & Martel, Alain & Guitouni, Adel, 2010. "The design of robust value-creating supply chain networks: A critical review," European Journal of Operational Research, Elsevier, vol. 203(2), pages 283-293, June.
    16. Santoso, Tjendera & Ahmed, Shabbir & Goetschalckx, Marc & Shapiro, Alexander, 2005. "A stochastic programming approach for supply chain network design under uncertainty," European Journal of Operational Research, Elsevier, vol. 167(1), pages 96-115, November.
    17. Cruz, Jose M. & Liu, Zugang, 2011. "Modeling and analysis of the multiperiod effects of social relationship on supply chain networks," European Journal of Operational Research, Elsevier, vol. 214(1), pages 39-52, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ning-Rong Tao & Zu-Hua Jiang & Jian-Feng Liu & Bei-Xin Xia & Bai-He Li, 2019. "A Metaheuristic Algorithm to Transporter Scheduling for Assembly Blocks in a Shipyard considering Precedence and Cooperating Constraints," Discrete Dynamics in Nature and Society, Hindawi, vol. 2019, pages 1-14, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jahani, Hamed & Abbasi, Babak & Sheu, Jiuh-Biing & Klibi, Walid, 2024. "Supply chain network design with financial considerations: A comprehensive review," European Journal of Operational Research, Elsevier, vol. 312(3), pages 799-839.
    2. Polo, Andrés & Peña, Numar & Muñoz, Dairo & Cañón, Adrián & Escobar, John Willmer, 2019. "Robust design of a closed-loop supply chain under uncertainty conditions integrating financial criteria," Omega, Elsevier, vol. 88(C), pages 110-132.
    3. Van Engeland, Jens & Beliën, Jeroen & De Boeck, Liesje & De Jaeger, Simon, 2020. "Literature review: Strategic network optimization models in waste reverse supply chains," Omega, Elsevier, vol. 91(C).
    4. Sahling, Florian & Kayser, Ariane, 2016. "Strategic supply network planning with vendor selection under consideration of risk and demand uncertainty," Omega, Elsevier, vol. 59(PB), pages 201-214.
    5. Fattahi, Mohammad & Govindan, Kannan & Keyvanshokooh, Esmaeil, 2017. "Responsive and resilient supply chain network design under operational and disruption risks with delivery lead-time sensitive customers," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 101(C), pages 176-200.
    6. Jahani, Hamed & Abbasi, Babak & Alavifard, Farzad & Talluri, Srinivas, 2018. "Supply chain network redesign with demand and price uncertainty," International Journal of Production Economics, Elsevier, vol. 205(C), pages 287-312.
    7. Govindan, Kannan & Fattahi, Mohammad, 2017. "Investigating risk and robustness measures for supply chain network design under demand uncertainty: A case study of glass supply chain," International Journal of Production Economics, Elsevier, vol. 183(PC), pages 680-699.
    8. Keyvanshokooh, Esmaeil & Ryan, Sarah M. & Kabir, Elnaz, 2016. "Hybrid robust and stochastic optimization for closed-loop supply chain network design using accelerated Benders decomposition," European Journal of Operational Research, Elsevier, vol. 249(1), pages 76-92.
    9. Gilani, Hani & Sahebi, Hadi, 2022. "A data-driven robust optimization model by cutting hyperplanes on vaccine access uncertainty in COVID-19 vaccine supply chain," Omega, Elsevier, vol. 110(C).
    10. Kim, Yun Geon & Chung, Byung Do, 2022. "Closed-loop supply chain network design considering reshoring drivers," Omega, Elsevier, vol. 109(C).
    11. Gholami-Zanjani, Seyed Mohammad & Klibi, Walid & Jabalameli, Mohammad Saeed & Pishvaee, Mir Saman, 2021. "The design of resilient food supply chain networks prone to epidemic disruptions," International Journal of Production Economics, Elsevier, vol. 233(C).
    12. Snoeck, André & Udenio, Maximiliano & Fransoo, Jan C., 2019. "A stochastic program to evaluate disruption mitigation investments in the supply chain," European Journal of Operational Research, Elsevier, vol. 274(2), pages 516-530.
    13. Kanokporn Kungwalsong & Abraham Mendoza & Vasanth Kamath & Subramanian Pazhani & Jose Antonio Marmolejo-Saucedo, 2022. "An application of interactive fuzzy optimization model for redesigning supply chain for resilience," Annals of Operations Research, Springer, vol. 315(2), pages 1803-1839, August.
    14. Shiva Zokaee & Armin Jabbarzadeh & Behnam Fahimnia & Seyed Jafar Sadjadi, 2017. "Robust supply chain network design: an optimization model with real world application," Annals of Operations Research, Springer, vol. 257(1), pages 15-44, October.
    15. Mohammaddust, Faeghe & Rezapour, Shabnam & Farahani, Reza Zanjirani & Mofidfar, Mohammad & Hill, Alex, 2017. "Developing lean and responsive supply chains: A robust model for alternative risk mitigation strategies in supply chain designs," International Journal of Production Economics, Elsevier, vol. 183(PC), pages 632-653.
    16. Tang, Christopher S. & Davarzani, Hoda & Sarkis, Joseph, 2015. "Quantitative models for managing supply chain risks: A reviewAuthor-Name: Fahimnia, Behnam," European Journal of Operational Research, Elsevier, vol. 247(1), pages 1-15.
    17. Dmitry Ivanov & Alexandre Dolgui & Boris Sokolov & Marina Ivanova, 2017. "Literature review on disruption recovery in the supply chain," International Journal of Production Research, Taylor & Francis Journals, vol. 55(20), pages 6158-6174, October.
    18. Rezapour, Shabnam & Srinivasan, Ramakrishnan & Tew, Jeffrey & Allen, Janet K. & Mistree, Farrokh, 2018. "Correlation between strategic and operational risk mitigation strategies in supply networks," International Journal of Production Economics, Elsevier, vol. 201(C), pages 225-248.
    19. Dmitry Ivanov & Richard Hartl & Alexandre Dolgui & Alexander Pavlov & Boris Sokolov, 2015. "Integration of aggregate distribution and dynamic transportation planning in a supply chain with capacity disruptions and the ripple effect consideration," International Journal of Production Research, Taylor & Francis Journals, vol. 53(23), pages 6963-6979, December.
    20. Badri, Hossein & Fatemi Ghomi, S.M.T. & Hejazi, Taha-Hossein, 2017. "A two-stage stochastic programming approach for value-based closed-loop supply chain network design," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 105(C), pages 1-17.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jomega:v:73:y:2017:i:c:p:60-78. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/375/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.